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Unambiguous discrimination of all  
20 proteinogenic amino acids and their 
modifications by nanopore

Kefan Wang    1,2,4, Shanyu Zhang    1,2,4, Xiao Zhou3,4, Xian Yang    1,2, 
Xinyue Li    1,2, Yuqin Wang    1,2, Pingping Fan1,2, Yunqi Xiao1,2, Wen Sun    1,2, 
Panke Zhang    1, Wenfei Li3 & Shuo Huang    1,2 

Natural proteins are composed of 20 proteinogenic amino acids and their 
post-translational modifications (PTMs). However, due to the lack of a 
suitable nanopore sensor that can simultaneously discriminate between all 
20 amino acids and their PTMs, direct sequencing of protein with nanopores 
has not yet been realized. Here, we present an engineered hetero-octameric 
Mycobacterium smegmatis porin A (MspA) nanopore containing a sole Ni2+ 
modification. It enables full discrimination of all 20 proteinogenic amino 
acids and 4 representative modified amino acids, Nω,N’ω-dimethyl-arginine 
(Me-R), O-acetyl-threonine (Ac-T), N4-(β-N-acetyl-d-glucosaminyl)-aspar
agine (GlcNAc-N) and O-phosphoserine (P-S). Assisted by machine learning, 
an accuracy of 98.6% was achieved. Amino acid supplement tablets and 
peptidase-digested amino acids from peptides were also analyzed using 
this strategy. This capacity for simultaneous discrimination of all 20 
proteinogenic amino acids and their PTMs suggests the potential to achieve 
protein sequencing using this nanopore-based strategy.

Proteins are important executors of life activities1 but only a few tech-
niques, such as Edman degradation2 and mass spectrometry1, have 
the capacity to determine the amino acid sequence of proteins. Detec-
tion limits in protein sequencing also hinder the characterization of 
low-abundance proteins. A single-molecule protein sequencer could 
provide improved sensitivity and information of post-translational 
modifications (PTMs). Nanopore, a versatile single-molecule sensor 
that has enabled remarkable progress in nucleic acid sequencing, has 
become a promising candidate. Although significant efforts were made 
to achieve nanopore translocation of proteins, no sequence informa-
tion could be obtained solely from uncontrolled protein transloca-
tion3. Following a nanopore-induced phase-shift sequencing (NIPSS) 
strategy4,5, a peptide–oligonucleotide conjugate can be scanned by a 
nanopore to report trace signatures containing sequence-dependent 

peptide information. This approach is, however, still hindered by nano-
pore resolution, which is insufficient for reliable protein sequence 
decoding due to the complexity of the sequence combination of the 
20 proteinogenic amino acids6–8.

An alternative approach is to sequence protein in a sequencing by 
hydrolysis approach, in which peptidase-digested amino acids are read 
sequentially by a nanopore, similar to that demonstrated with a protea-
some nanopore9. This, however, requires a nanopore that can identify 
all proteinogenic amino acids as well as their PTMs unambiguously, 
and this has not yet been achieved. Previously, a CuII-phenanthroline 
modified α-hemolysin (α-HL) nanopore was shown to have achieved 
direct identification of five pairs of amino acid enantiomers10. It failed, 
however, to simultaneously discriminate between all 20 amino acids 
due to the insufficient resolution of α-HL. An aerolysin nanopore was 
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which consists of one monomeric subunit containing a sole cysteine and 
seven monomeric subunits lacking any cysteine, was previously gener-
ated for nanopore modification of maleimide derivatives by a Michael 
addition reaction19–21. In this work, a maleimido-C3-nitrilotriacetic acid 
(maleimido-C3-NTA) reacts with the cysteine residue of (N90C)1(M2)7, 
so that a sole NTA adapter is site-specifically introduced to the pore 
constriction. For simplicity, this NTA-modified MspA hetero-octamer 
is referred to here as MspA-NTA (Fig. 1b). A nickel ion (Ni2+) can then be 
chelated by the NTA adapter of MspA-NTA to form an MspA nanopore 
containing a sole Ni2+ located at its pore constriction. For simplicity, 
this Ni2+-modified MspA is referred to here as MspA-NTA-Ni.

All of the reaction processes described above were monitored in 
real time with single-channel recording (Fig. 1c). Experimentally, the 
measurement was performed with a custom measurement chamber 
with two compartments each containing a buffer of 1.5 M KCl and 10 mM 
N-cyclohexyl-2-aminoethanesulfonic acid (CHES) at pH 9.0 (Methods). 
By convention, the electrically grounded compartment is defined as cis 
and the opposite compartment is defined as trans. A transmembrane 
voltage of +100 mV was applied continually. During single-channel 
recording, the open pore current of a single (N90C)1(M2)7 measures 
~310 pA. At this stage, fluctuating noise (5.95 ± 0.19 pA) was also 
observed due to the existence of an unmodified cysteine at the pore 
constriction25. Maleimido-C3-NTA was added to cis to reach a final 
concentration of 200 μM. Immediately afterwards, an abrupt and 
irreversible current drop of ~150 pA was recorded, indicating the suc-
cess of the NTA modification and the generation of MspA-NTA (Fig. 1c). 
The open pore current of MspA-NTA also reflects dynamic switching 
between two major current levels (158 ± 2 pA and 189 ± 2 pA), prob-
ably due to the existence of an unoccupied NTA adapter. After further 
addition of nickel sulfate to trans with a final concentration of 50 μM, 
another irreversible current drop of ~50 pA was observed, confirm-
ing the success of Ni2+ binding to MspA-NTA and the formation of 
MspA-NTA-Ni (Fig. 1c). At this stage, although some transient spike 

also used in the discrimination of octapeptides containing a single 
terminal amino acid difference11. The analytes of this approach are 
short peptides rather than standalone amino acids and it was stated 
that only 13 out of 20 peptides of this kind were identified11. Some other 
approaches of nanopore amino acid identification have been reported, 
but direct identification of all 20 proteinogenic amino acids has still 
not been realized12. Single-molecule identification of amino acids may 
be performed by recognition tunneling13, but the reported event dis-
crimination is still unsatisfactory. The consistency of a manufactured 
tunneling junction device and its coupling to a nanopore sensor also 
pose other technical challenges.

Mycobacterium smegmatis porin A (MspA)14 is a conically shaped 
biological nanopore that is used widely in nanopore sequencing of 
nucleic acids4,5. An engineered MspA can also be used as a nanoreac-
tor that can monitor single-molecule chemical reactions. Ions and 
small molecules, such as tetrachloroaurate(III)15, neuron transmit-
ters16, anti-COVID-19 drugs17, catecholamine enantiomers18, mono-
saccharides19, nucleoside monophosphates20 and alditols21, have 
been identified using MspA nanopores containing suitable reactive 
adapters. Inspired by immobilized metal-affinity chromatography 
(IMAC)22, in which a nickel-nitrilotriacetic acid (Ni-NTA) affinity column 
is used to purify recombinant proteins containing a hexahistidine 
tag, a hetero-octameric MspA containing a sole Ni-NTA adapter at its 
pore constriction was designed and prepared for amino acid sensing. 
Although Ni-NTA modification applied to the whole internal lumen of 
solid state nanopores was previously reported in the detection of his-
tamine23 and His-tagged proteins24, a biological nanopore containing 
a sole Ni2+ modification has not been reported to date.

Construction of MspA-NTA-Ni
To introduce a single NTA adapter site-specifically to the pore constric-
tion of MspA, a hetero-octameric MspA mutant, also referred to as 
(N90C)1(M2)7 (Fig. 1a), was first prepared (Methods)19–21. (N90C)1(M2)7, 
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Fig. 1 | Construction of a Ni-NTA-modified nanopore for amino acid sensing.  
a, The structure of (N90C)1(M2)7. (N90C)1(M2)7 is a hetero-octameric MspA 
containing a sole cysteine residue (pink) at site 90 in one of its monomeric 
components. b, The construction of a Ni-NTA-modified nanopore. Maleimido-
C3-NTA reacts with the cysteine residue of (N90C)1(M2)7 by a maleimide-thiol 
reaction to form MspA-NTA. A Ni2+ was subsequently chelated by MspA-NTA. For 
simplicity, this nickel-modified pore is referred to as MspA-NTA-Ni. c, Real-time 
characterization of Ni-NTA modification monitored by single-channel recording. 
The measurements were performed as described in Methods. Maleimido-C3-NTA 
was added to cis at a final concentration of 200 μM for NTA modification. 
Afterwards, nickel sulfate was added to trans with a final concentration of 50 μM 

to trigger nickel chelation. The success of each reaction step results in an abrupt 
decrease in the current amplitude and a change in the current noise. Here, I0 
stands for the open pore current of MspA-NTA-Ni. d, The mechanism of amino 
acid sensing using MspA-NTA-Ni. e, A representative trace of amino acid sensing 
by MspA-NTA-Ni. Glycine was used as the model amino acid. With a continually 
applied potential of +100 mV and the addition of glycine to cis with a final 
concentration of 2 mM, nanopore events appearing as reversible switching 
between Iaa and I0 were immediately observed. For demonstration, the trace was 
Butterworth low-pass filtered with a cut-off frequency of 300 Hz. f, The scatter 
plot of ΔI versus SD of events acquired as described in e. ΔI is defined as 
ΔI = Iaa − I0. A total of 165 events were used to generate the plot (n = 165).
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noise was seen, dynamic current fluctuations previously observed with 
(N90C)1(M2)7 and MspA-NTA were no longer observable, confirming 
that the previously observed current switching of MspA-NTA was due to 
the presence of the unoccupied NTA, and that the Ni2+ was now tightly 
bound to the NTA adapter. During the time-extended measurement, no 
further irreversible current drop was observed, confirming that only 
one NTA adapter exists in the pore lumen and that the MspA-NTA-Ni 
contains only a sole Ni2+ modification. In this condition, the newly 
formed MspA-NTA-Ni remained unchanged in continuous measure-
ments of ~3 h (Supplementary Fig. 1). Accordingly, the preparation of 
MspA-NTA-Ni is well characterized at the single-molecule level. The 
conductance features of (N90C)1(M2)7, MspA-NTA and MspA-NTA-Ni 
were also recorded for future reference (Supplementary Fig. 2 and 
Supplementary Table 1). Given that there is only a single modification 
site on the hetero-octamer (N90C)1(M2)7 and that the modified NTA 
can bind only a single Ni2+, the nanopore conductance corresponding 
to the state of MspA-NTA and MspA-NTA-Ni is independent of the con-
centration, respectively, of the maleimido-C3-NTA and nickel sulfate 
used during nanopore modification.

MspA-NTA can also be prepared in batches by incubating 
(N90C)1(M2)7 with maleimido-C3-NTA (Methods). The MspA-NTA 
generated in this way can be used directly without any further treat-
ment and its reported open pore current is identical to that previously 
characterized by single-channel recording (Fig. 1c). Furthermore, 
with a single MspA-NTA inserted, addition of nickel sulfate to trans to 
a final concentration of 50 μM immediately results in the formation 
of MspA-NTA-Ni. With a +100 mV applied bias, the open pore current 
of MspA-NTA-Ni (I0) measures ~115 pA, which is consistent with that 
observed in Fig. 1c.

Amino acid sensing
Amino acids, which contain both an amino and a carboxyl group, are 
bidentate ligands that can react reversibly with metal ions26. When 
diffusing to the pore constriction of MspA-NTA-Ni, amino acids are 
expected to bond with the immobilized Ni2+ to form a ternary complex 
(Fig. 1d). Given that the binding between Ni2+ and an amino acid is con-
siderably weaker than that between Ni2+ and NTA27,28, it is expected that 
the binding and the dissociation of amino acids would fail to trigger 
the dissociation of Ni2+ from the NTA adapter. Thus, this configuration 
permits continuous and time-extended measurement of different 
amino acids. To support this, glycine, the simplest amino acid, was 
used as a model analyte (Fig. 1e). Experimentally, the measurement 
was performed with batch-prepared MspA-NTA in a 1.5 M KCl buffer  
(1.5 M KCl, 10 mM CHES, pH 9.0) with a continually applied transmem-
brane voltage of +100 mV. With a single MspA-NTA in the membrane, 
nickel sulfate was added to trans to a final concentration of 50 μM, 
which immediately triggers the formation of MspA-NTA-Ni. Upon the 
addition of glycine to cis with a final concentration of 2 mM, successive 
nanopore events appearing as current fluctuations between I0 and 
the event current (Iaa, which is larger than I0), were observed imme-
diately (Fig. 1e and Supplementary Video 1). Furthermore, the rate of 
event appearance also increases when the final concentration of gly-
cine added to cis is increased from 0.5 mM to 50 mM (Supplementary  
Fig. 3), confirming that the Iaa was generated by glycine binding. Even 
with 50 μM added glycine, the corresponding events were still detect-
able but with a much lower rate of event appearance (Supplementary 
Fig. 4). To describe the sensing events quantitatively, core parameters 
such as open pore current (I0), event current (Iaa), noise amplitude  
(SD; the standard deviation of the event noise), dwell time (toff), 
inter-event duration (ton), mean inter-event duration (τon) and mean 
dwell time (τoff) are defined and summarized in Supplementary Fig. 5. 
The reciprocal of the mean inter-event duration (1/τon, n = 3) is propor-
tional to the concentration of glycine, which is consistent with a bimo-
lecular model (Supplementary Fig. 3b and Supplementary Table 2). The 
reciprocal of the mean dwell time (1/τoff, n = 3), however, is independent 

of the glycine concentration, consistent with a unimolecular model 
(Supplementary Fig. 3b and Supplementary Table 2). Generally, the rate 
of glycine event appearance increases when the buffer pH is upregu-
lated (Supplementary Fig. 6 and Supplementary Table 3), thus a pH 
9.0 buffer (1.5 M KCl, 10 mM CHES, pH 9.0) was used for all subsequent 
measurements, when not otherwise stated.

The blockage amplitude ∆I is defined as ΔI = Iaa − I0. For glycine, 
the ∆I is measured at ~70 pA. However, amino acid sensing events 
acquired with a Cu(II) modified α-HL10 measure only 2–5 pA. By con-
trast, MspA (ref. 29), which has a conical lumen geometry and focuses 
the ionic current to the pore constriction, produces a greater event 
amplitude for small molecules than α-HL, which has a cylindrical 
lumen30. The event scatter plot of ∆I versus the noise amplitude (that 
is, SD) also shows a single and narrowly distributed population of events 
(Fig. 1f), indicating that both of the event features of sensing are 
extremely consistent between events. The NTA-Ni2+ adapter, which 
chemically restricts the conformation of amino acid analytes, plays a 
critical role in the production of events. The larger event amplitude 
and the high consistency of the event features are critical in the dis-
crimination of different amino acids, although there are only subtle 
differences. This sensing capacity, however, could not be achieved 
when an MspA containing no NTA adapter or an MspA-NTA containing 
no Ni2+ was tested (Supplementary Fig. 7). To sum up, this shows that 
the MspA nanopore and the NTA-Ni2+ adapter are pivotal in the perfor-
mance of amino acid sensing. To the best of our knowledge, however, 
a biological nanopore containing an NTA or a Ni2+ modification has not 
been reported previously.

Discrimination of 20 proteinogenic amino acids
To show how different proteinogenic amino acids are distinguished 
by MspA-NTA-Ni, identical measurements were performed with various 
proteinogenic amino acids (Fig. 2a). In independent measurements 
with different amino acids, each type of amino acid produces a unique 
event shape (Supplementary Figs. 8–11). This is more clearly seen in 
Fig. 2a, in which all representative amino acid events are shown together 
for comparison. Generally, all amino acid sensing events are positive, 
that is, Iaa > I0. In addition, the blockage levels of amino acid events all 
show telegraphic switching between two levels (Supplementary  
Fig. 12). This telegraphic switching, which generates unique event fea-
tures for different amino acids, is extremely useful in the discrimination 
of all 20 proteinogenic amino acids, again demonstrating the impor-
tance of the NTA-Ni2+ adapter.

Although most amino acids produce a single type of sensing event, 
histidine and proline each have two types of sensing events. In histidine, 
its imidazole side chain31 may also additionally bond with Ni2+, gener-
ating diverse binding configurations discriminable by MspA-NTA-Ni 
(Supplementary Video 2). Proline is the only cyclic amino acid of the 
20 proteinogenic amino acids, and the α-amino group of proline is 
attached directly to its side chain. This particular chemical structure 
may generate configurations different from that of other proteinogenic 
amino acids. For simplicity, the type 1 and type 2 events of histidine and 
proline are referred to here as H1/H2 and P1/P2, respectively.

Based on three independent measurements with each amino acid 
(n = 3), the above-described sensing events generate highly reproduc-
ible data. The generated core event parameters summarized in Sup-
plementary Table 4 list the quantitative details. Generally, the ∆I of 
different amino acid events is 38–100 pA, which is a much wider range 
than that previously reported for α-HL, which gives a ∆I of only 2–5 pA10. 
The low resolution of α-HL is thus able to discriminate only between five 
pairs of amino acid enantiomers10 and failed to achieve simultaneous 
discrimination of all 20 proteinogenic amino acids, which is extremely 
important for nanopore protein sequencing. Here, by simultaneously 
considering ∆I and SD (Fig. 2b), events corresponding to the binding 
of 20 proteinogenic amino acids are well discriminated. Although the 
P2 events have some overlap with the H1 events in the two-dimensional 
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scatter plot, their event shapes are significantly different and can be 
distinguished by the different dwell times (toff) (Supplementary Fig. 13). 
Discrimination between leucine and its isomer, isoleucine, is difficult 
using only mass spectrometry, but they are able to be clearly discrimi-
nated using MspA-NTA-Ni (Extended Data Fig. 1), again demonstrating 
the very effective resolution of MspA-NTA-Ni for amino acid sensing.

No clear correlation could be seen in the plots of ∆I against the 
volume or the molecular weight of amino acids (Supplementary  
Fig. 14). However, by plotting the mean ∆I against the net charge of 

different amino acids (Supplementary Table 5), it can be seen that the 
∆I of events acquired with more negatively charged amino acids is 
generally larger (Fig. 2c). Also, the appearance of a negatively charged 
analyte at the MspA constriction, such as a carboxymethyl guanine32, 
or the generation of an anionic boronate ester16 generally indicates 
enhanced channel conductance. The same phenomenon was also 
observed in the significant reduction of channel conductance of MspA 
when the negatively charged aspartic acid at the pore constriction was 
mutated to asparagine, which is electrically neutral14,33. This sensitivity 
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by different amino acids when measured with MspA-NTA-Ni. The measurements 
were carried out as described in Methods. A total of 20 proteinogenic amino 
acids were separately added to cis with a final concentration of 2 mM (A, C, F, G, 
H, K, M, N, Q, R, S, T, V, W, Y), 4 mM (D, E, I, L) or 40 mM (P) (Supplementary Figs. 
8–11 and Supplementary Table 4). The final concentration of proline was set 
higher to compensate for its low rate of event appearance. Histidine and proline 
both produce two types of nanopore events, defined respectively as H1/2 and 
P1/2. According to their net charge (Znet), all 20 amino acids were classified into 
three groups, in which amino acids with positive charge, weak negative charge 
and strong negative charge were marked with a red, yellow or blue background, 

respectively. b, The scatter plot of ΔI versus SD of events acquired with different 
amino acids. One hundred events acquired with each amino acid were used 
to generate the plot, according to which, most amino acid events are fully 
distinguishable. To clarify the detail, the events inside the red box are further 
zoomed in and shown on the right. Although the events corresponding to P2 and 
H1 appear to overlap in the plot, their event characteristics are visually different 
and can be discriminated when other event features such as dwell time, skewness 
and kurtosis are simultaneously considered. c, The correlation between ΔI and 
Znet of amino acids. Generally, the blockage amplitude (ΔI) is larger when the net 
charge of the amino acid is more negative. The color background in the plot is 
consistent with that in a.
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of MspA to charge is important in the discrimination between amino 
acids that are similar in mass or volume but which differ in charge, such 
as glutamic acid (molecular weight, 146.12; Znet = −1.28) versus glu-
tamine (molecular weight, 146.15; Znet = −0.66), and arginine (volume, 
188.2; Znet = +0.62) versus phenylalanine (volume, 189.7; Znet = −0.47).

By applying a +1 mV applied potential, which minimizes the 
contribution of the electrophoretic force and the electroosmotic 
flow, amino acid events were still clearly detectable (Supplementary  
Fig. 15), suggesting that the amino acids can spontaneously diffuse to 

the pore constriction to trigger event generation. This also explains 
why all 20 proteinogenic amino acids, which are differently charged, 
can be simultaneously detected in the same set-up (Fig. 3e–g). For 
the same reason, amino acid sensing can be carried out regardless of 
whether the amino acids were added to cis or trans (Supplementary 
Figs. 16–18). However, the electrophoretic force still regulates the rate 
of event appearance for electrically charged amino acids. With the same 
applied potential, the addition of electrically charged amino acids to cis 
or trans would produce a noticeable difference in their event detection 
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Fig. 3 | Identification of 20 amino acids by machine learning. a, The workflow 
of machine learning. In brief, sensing events separately acquired with 20 amino 
acids were collected to form a dataset. Five event features (ΔI, SD, skewness 
(skew), kurtosis (kurt) and toff) were extracted from each event to form a feature 
matrix. A 2D feature matrix and a 5D feature matrix were built for machine 
learning. The 2D matrix contains only two features (ΔI and SD), similar to that 
in a 2D scatter plot (Fig. 2b). The 5D matrix, which contains all five features, 
includes more information from sensing. Machine learning was performed with 
the Classification Learner toolbox of MATLAB. Seven classifiers were evaluated 
with 10-fold cross-validation to screen the best-performing model. For the 2D 
matrix, the highest validation accuracy is 96.0% (Supplementary Table 6). For 
the 5D matrix, the highest validation accuracy reaches 98.8%, achieved by the 
quadratic SVM model (Supplementary Table 7). b, The confusion matrix of 

amino acid classification generated by the quadratic SVM model using the 5D 
feature matrix. TPR (true-positive rate) and FNR (false-positive rate) represent 
the correct or false classification of each true class, respectively. c, The parallel 
coordinate plots generated from the 5D feature matrix. d, The learning curve 
of the quadratic SVM model for varying sample size. e–g, Representative traces 
acquired during simultaneous sensing of all 20 amino acids. The measurements 
were performed as described in Methods. All amino acids were simultaneously 
added to cis. The final concentration of H and C was 0.1 mM. The concentration 
of F, M, N, T, S was 0.5 mM. The concentration of P was 20 mM. The concentration 
of all remaining amino acids was 1 mM. Zoomed-in views of these traces are 
shown in Supplementary Figs. 21–23. The events were predicted with the trained 
quadratic SVM model.
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frequency (Supplementary Figs. 17 and 18). However, for electrically 
neutral amino acid such as glycine, the addition of amino acids to cis or 
trans results in a similar detection frequency (Supplementary Fig. 16).

Molecular dynamics simulations were conducted using 
a GROMACS package34 for the MspA embedded in the POPC 
(1-palmitoyl-2-oleoylphosphatidylcholine) lipid bilayer at 300 K and 
1 atm with a salt concentration of 1.5 M. An NTA adapter was established 
and was covalently connected to the side chain S atom at site 90 of the 

first monomeric subunit of the pore model according to experimental 
set-up. Ni2+ and glycine were added to the adapter, respectively, to 
simulate the states corresponding to NTA, NTA-Ni or NTA-Ni-Gly during 
a nanopore measurement. An external electric field of 0.15 V per 10 nm 
along the direction perpendicular to the membrane plane was applied 
(Methods). According to the simulation results, prior to Ni2+ and glycine 
binding, the NTA adapter tends to bend towards the trans side of the 
membrane. In this state the NTA is less conformationally confined and 
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Fig. 4 | Identification of amino acids with PTMs. The measurements were 
performed as described in Methods. a, Top: amino acids with the PTMs 
methylation, acetylation, glycosylation and phosphorylation, as represented 
by Nω,N’ω-dimethyl-arginine (Me-R), O-acetyl-threonine (Ac-T), N4-(β-N-acetyl-d-
glucosaminyl)-asparagine (GlcNAc-N) and O-phospho-serine (P-S), respectively. 
Bottom: representative nanopore events produced by the corresponding amino 
acids (Supplementary Fig. 25 and Supplementary Table 8). The open pore current 
(I0) of MspA-NTA-Ni is marked with a dashed line. The current levels resulting 
from amino acid binding are marked with different color bands. b, The scatter 
plot of ΔI versus SD of events produced by the four amino acids described in a.  
The data points represent 100 events acquired for each amino acid. During 

the measurement, each analyte was solely added to the cis chamber at a final 
concentration of 2 mM. c–f, Representative traces acquired from simultaneous 
sensing of Me-R/R (c), Ac-T/T (d), GlcNAc-N/N (e) and P-S/S (f). Each amino acid 
was added to cis with a final concentration of 2 mM. Events were identified  
and marked with orange (Me-R), purple (Ac-T), green (GlcNAc-N), pink (P-S)  
or gray symbols (for the corresponding unmodified amino acids), above each 
event. Noticeable differences in event shapes are seen in each comparison pair. 
g–j, The event scatter plots of ΔI versus SD of events produced by Me-R/R  
(g, n = 180), Ac-T/T (h, n = 158), GlcNAc-N/N (i, n = 180) and P-S/S (j, n = 150). 
In each plot, two fully separated populations of events, generated by the 
unmodified and modified amino acids, respectively, are seen.
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may spontaneously switch between multiple conformations in the 
pore lumen, a phenomenon that might explain why telegraphic noise 
was observed at this stage during single-channel recording. However, 
when Ni2+ was bound to the NTA adapter, the Ni2+ induces strong inter-
actions between amino acids in the pore lumen and the NTA adapter. 
This results in an extremely tightly bound configuration of the NTA-Ni 
adapter in the pore lumen, which explains why a low noise current level 
was consistently observed during single-channel recording (Fig. 1c). 
Also, in this state the narrow pore constriction is more occupied by the 
whole NTA-Ni adapter and a lower channel conductance is expected. 
Furthermore, upon binding with a glycine, the original strong interac-
tion between the pore lumen and the Ni2+ is diminished because the 
Ni2+ is now occupied by the bound glycine. This results in a release of 
the whole NTA-Ni-Gly adapter from the narrowest spot of the pore 
constriction with a resulting increase in the channel conductance 
(Supplementary Figs. 19 and 20), a phenomenon that also explains 
why all amino acid sensing events are positive (that is, Iaa > I0). At this 
stage, the NTA adapter is again loosely confined in its conformation, 
which might be the reason why all amino acid events generate highly 
fluctuating noise (Fig. 2a).

Identification of amino acids by machine learning
To automate event identification and to avoid the bias caused by human 
judgment, a fair and objective custom machine learning algorithm was 
developed for amino acid identification (Methods). The overall process 
of machine learning includes data collection, feature matrix building 
and model training (Fig. 3a). A total of 6,000 events separately acquired 
with different amino acids were first collected, to form a dataset. Five 
event features (that is, ∆I, SD, toff, skewness and kurtosis) of the block-
age level of each event were extracted using a custom MATLAB code to 
form a feature matrix (5D). All events in the matrix have known labels 
because they were separately generated from a known amino acid. 
The feature matrix was passed to the Classification Learner toolbox 
of MATLAB for training. Seven inbuilt classifiers, that is, ensemble, 
SVM (support vector machine), decision trees, naive Bayes, neural net-
work, discriminant analysis and KNN (k-nearest neighbor) were evalu-
ated. To avoid overfitting, the model performance was evaluated with 

10-fold cross-validation. The derived quadratic SVM model, which has a 
98.8% validation accuracy, was found to be the best-performing model  
(Fig. 3a and Supplementary Tables 6 and 7).

The previously obtained 5D feature matrix was also simplified to 
a matrix containing only two event parameters (2D), that is, ∆I and SD. 
The results of the 2D feature matrix were used as input for training and 
validation. However, the reported best validation accuracy dropped 
to 96.0%, indicating that the 5D feature matrix, which contains more 
information, clearly outperforms its 2D counterpart. Viewed in a dif-
ferent way, a machine learning program that simultaneously consid-
ers five event features is more accurate than the 2D scatter plot of ∆I 
versus SD (Fig. 2b).

The confusion matrix produced by the quadratic SVM model 
is shown in Fig. 3b, in which all amino acid events have a minimum 
true-positive rate of 95% (aspartic acid, isoleucine, leucine, asparagine, 
arginine and threonine even had a true-positive rate of 100%). Although 
a clear overlap between histidine and proline events was observed in 
the 2D scatter plot of ∆I versus SD (Fig. 2b), the validation accuracy 
of these two amino acids reached 95.4% and 96.7% respectively, by 
simultaneously considering the five event features and using machine 
learning (Fig. 3b). The parallel coordinate plot generated by the 5D fea-
ture matrix is also shown in Fig. 3c. To estimate the efficiency of model 
training, a learning curve was produced (Fig. 3d), which showed that 
a minimum of 1,500 input events is sufficient to achieve an accuracy 
of 98%. Furthermore, the trained quadratic SVM model was used to 
identify unlabeled amino acid events acquired with a mixture of all 20 
proteinogenic amino acids (Supplementary Video 3). Representative 
traces are shown in Fig. 3e–g and all events were predicted and labeled 
by machine learning (Fig. 3e–g and Supplementary Figs. 21–23). As a 
measure of its performance, the corresponding event scatter plot of 
∆I versus SD before and after event identification by machine learning 
is shown in Supplementary Fig. 24.

Identification of amino acids containing PTMs
PTMs, which are the chemical modification of proteins after transla-
tion, are critical in the modulation of a wide variety of protein func-
tions. It is estimated that 50–90% of proteins in the human body are 
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Fig. 5 | Rapid analysis of amino acid tablets using MspA-NTA-Ni. a, Schematic 
diagram of the workflow. The compound amino acid tablets (Kingnature) were 
ground into powder and dissolved in a KCl buffer (1.5 M KCl, 10 mM CHES,  
pH 9.0) with a final concentration of 50 mg ml−1. Then, 10 μl of the solution 
was added to cis. Amino acid events were immediately observed and the 
event identities were predicted by machine learning. b, A representative trace 
acquired during nanopore sensing of the amino acid tablet. More details are 
shown in a zoomed-in view of the trace in Supplementary Fig. 28. Nanopore 

measurements were performed as described in Methods. All events were 
predicted by the previously trained quadratic SVM model. c, The event scatter 
plot of ∆I versus SD generated using events acquired from a 90 min continuous 
recording (n = 1,117) as described in b. Nine populations of events corresponding 
to R, K, T, W, I, F, V, M and L, respectively, were identified by machine learning. 
The identified amino acid components were consistent with that described in 
the product information.
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post-translationally modified35. Accurate identification of PTMs is 
crucial for the understanding of cellular function as well as the related 
physiological and pathological processes. Although nanopore sensing 
of PTMs on peptides or proteins has been previously reported36,37, a 
nanopore that can directly recognize individual amino acids containing 
PTMs has never been described, to the best of our knowledge. A recent 
report using the NIPSS strategy has demonstrated nanopore discrimi-
nation of peptides with individual phosphothreonine substitutions37. 
However, any substitution of phosphothreonine in the peptide will 
interfere with the nanopore reading of the neighboring amino acids, 
demonstrating an insufficient spatial resolution of that approach. It 
also fails to demonstrate nanopore discrimination of other PTMs37.

Four common amino acids containing PTMs35, that is, Nω

,N’ω-dimethyl-arginine (Me-R), O-acetyl-threonine (Ac-T), N4-(β-N-
acetyl-d-glucosaminyl)-asparagine (GlcNAc-N) and O-phospho-serine 
(P-S) were used as model analytes (Fig. 4a). They demonstrate, respec-
tively methylation, acetylation, glycosylation and phosphorylation, 
which are widely observed in natural proteins. When measured using 
MspA-NTA-Ni (Fig. 4a and Supplementary Fig. 25), representative 

events generated by these modified amino acids had unique event 
features, clearly distinguishable from events of proteinogenic amino 
acids (Fig. 2a). Core event parameters, as derived from three inde-
pendent measurements for each condition, are also summarized in 
Supplementary Table 8 to show their consistency. The event scatter 
plot of ∆I versus the noise amplitude (that is, SD) of events of all modi-
fied amino acids (Fig. 4b), in which four fully separated populations of 
events are shown, confirms that MspA-NTA-Ni is also suitable for amino 
acids containing PTMs and that a high resolution of sensing is achieved.

These four modified amino acids and their unmodified precursors 
were also simultaneously sensed by the same nanopore (Fig. 4c–f and 
Supplementary Video 4). The results from each comparison pair (Sup-
plementary Fig. 26) show two fully separated populations of events in 
the corresponding scatter plots (Fig. 4g–j). Although demonstrated 
with only four modified amino acids, this sensing strategy is in prin-
ciple suitable for other types of modification such as hydroxylation, 
nitration or sulfation.

Furthermore, the results of the nanopore sensing of the four modi-
fied amino acids were complemented by the existing machine learning 
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Fig. 6 | Identification of proteolytically cleaved amino acids. a, Schematic 
diagram of the identification of proteolytically cleaved amino acids from 
peptide using MspA-NTA-Ni. Leucine aminopeptidase (LAP) was used to digest 
the peptide and generate the amino acids. The amino acids were then identified 
by MspA-NTA-Ni, enabling confirmation of the amino acid components of the 
peptide. b, A representative trace of amino acids after LAP treatment of GHK 
peptide. c, The event scatter plot of ∆I versus SD for the events acquired as 
described in b. Data from a 90 min continuous trace are used. Four populations 
of events were identified by machine learning. Here, H1 and H2 represent two 

separate populations of events. d, Representative traces of amino acids after 
LAP treatment of octapeptide (TLEIYNRF). e, The event scatter plot of ∆I versus 
SD for events acquired as described in d. Data from a 90 min continuous trace 
are used. Eight populations corresponding to R, N, T, I, F, Y, L and E, respectively, 
were identified by machine learning. All nanopore measurements (b–e) were 
performed as described in Methods. A total of 40 μl filtrate of the LAP digestion 
product was added to cis prior to measurement. The event identities (b–e) were 
predicted by the previously trained machine learning algorithm. The open pore 
current (I0) is marked with a dashed line in b and d.
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algorithm (Extended Data Fig. 2a). The machine learning model is iden-
tical to that described in Fig. 3, but a total of 24 rather than 20 classes 
of amino acid data were used as input. Five event features were used 
for machine learning, and 10-fold cross-validation was used to evalu-
ate the model performance (Supplementary Table 9). The quadratic 
SVM model had the highest validation accuracy of 98.6%, which is only 
0.2% lower than that for 20 amino acids (98.8%). The corresponding 
confusion matrix is also shown in Extended Data Fig. 2b, in which the 
accuracy of all 24 amino acids is above 95.0% and the accuracy of 15 
amino acids exceeds 98.0%. The event scatter plot of ∆I versus SD of all 
24 amino acids is summarized in Extended Data Fig. 2c. Acknowledging 
the high resolution of MspA, the inclusion of extra data acquired with 
amino acids containing PTMs does not diminish the performance of 
the machine learning program, suggesting that the current strategy 
could handle even more types of amino acids in the future.

Rapid analysis of compound amino acid tablets
The high resolution of MspA-NTA-Ni and the high performance of the 
accompanying machine learning algorithm suggest that this sens-
ing strategy could be used to analyze amino acid components in real 
biological samples. Amino acids are important for nutrition and are 
critical for the health and daily activities of humans. A variety of health-
care products designed to supplement nutrition, enhance immunity 
and renew physiological functions contain amino acids38. For a dem-
onstration, a commercially available ‘compound amino acid tablet’ 
containing eight essential amino acids39 (leucine, isoleucine, lysine, 
methionine, phenylalanine, threonine, tryptophan and valine) and one 
semi-essential amino acid (arginine) was analyzed using MspA-NTA-Ni 
(Fig. 5a and Supplementary Fig. 27).

The tablets were first pulverized and then dissolved in a KCl buffer 
(1.5 M KCl, 10 mM CHES, pH 9.0) at a concentration of 50 mg ml−1. With 
a single MspA-NTA-Ni, the amino acid tablet solution was added to 
cis at a final concentration of 1 mg ml−1. The corresponding types of 
amino acid events were immediately observed during single-channel 
recording. The identities of all events were automatically recognized 
by the previously trained quadratic SVM model (Fig. 5b and Supple-
mentary Fig. 28). Events from a 90 minute continually recorded trace 
were used to generate the event scatter plot (Fig. 5c), in which nine 
clearly delineated populations of amino acid events are seen. They 
corresponded, respectively, to arginine, lysine, threonine, tryptophan, 
valine, phenylalanine, isoleucine, leucine and methionine, consistent 
with that described in the tablet’s product manual. This confirmed that 
our sensing strategy is robust, consistent and can be directly applied in 
the quality control of nutrition products. Although a tablet normally 
contains other components such as starch and inorganic salts, the 
NTA-Ni2+ adapter provides sufficient selectivity to avoid interference 
from other components in natural samples. This suggests the feasibil-
ity of direct identification of amino acids in blood serum, urine or milk 
serum samples without complicated treatment, which would be useful 
in clinical diagnosis or nutrition analysis.

Identification of proteolytically cleaved  
amino acids
To evaluate whether the demonstrated sensing strategy may be used 
in the analysis of amino acid composition of peptides or proteins, the 
same principle was further applied in the identification of proteolyti-
cally cleaved amino acids (Fig. 6a). Leucine aminopeptidase (LAP) is an 
exopeptidase that catalyzes amino acid cleavage from the N terminus 
of the polypeptide chain40 and has a broad substrate compatibility. 
Thus, LAP was used to cleave different target peptides into free amino 
acids prior to nanopore measurements.

GHK (glycyl-l-histidyl-l-lysine) is a naturally occurring tripeptide 
that is widely found in human serum41. It has a high copper affinity 
and has anti-inflammatory and tissue remodeling features. Experi-
mentally, GHK was first incubated with LAP at 37 °C for 12 hours to 

achieve complete peptide cleavage (Methods). The product was then 
ultrafiltered to remove the enzyme, after which 40 μl filtrate was 
added to MspA-NTA-Ni, and the measurement was similarly carried out  
(Methods). Immediately afterwards, nanopore events corresponding 
to amino acids were consecutively reported (Fig. 6b). Events acquired 
from a 90 minute continually recorded trace were used to generate 
the scatter plot of ∆I versus SD (Fig. 6c and Supplementary Fig. 29). To 
remove non-clustered background noise, a DBSCAN (density-based 
spatial clustering of applications with noise) analysis was performed 
(Supplementary Fig. 29). Here, the non-clustered events may result 
from interfering molecules introduced from the enzymatic digestion 
buffer. Afterwards, four clusters of events were observed. According 
to the previously trained machine learning algorithm, they were identi-
fied, respectively, as K, G, H1 and H2 (Fig. 6c), fully consistent with the 
amino acid composition of the GHK peptide. Here, H1 and H2 are the 
two types of events generated by histidine, as noted above (Fig. 2a and 
Supplementary Video 2).

To demonstrate the generalizability of this assay to other 
peptides, a custom-synthesized octapeptide with a sequence of 
Thr-Leu-Glu-Ile-Tyr-Asn-Arg-Phe (TLEIYNRF) was identically treated 
and measured with MspA-NTA-Ni. A representative trace of the nano-
pore sensing of the TLEIYNRF digestion product is shown in Fig. 6d, in 
which the events corresponding to the expected amino acid identities 
are seen. After DBSCAN treatment followed by machine learning predic-
tion (Fig. 6e and Supplementary Fig. 29), eight clearly delineated event 
populations were identified and they correspond, respectively, to R, N, 
T, I, F, Y, L and E, consistent with the sequence of the source peptide. To 
this end, this successfully demonstrates the capacity of MspA-NTA-Ni 
to identify proteolytically cleaved amino acids.

Discussion
A Ni2+-modified MspA hetero-octamer (MspA-NTA-Ni) has  
been designed and used for amino acid sensing (Supplementary  
Video 5). It demonstrates clear discrimination of all 20 proteinogenic 
amino acids and 4 representative amino acids containing PTMs. This 
sensing configuration has remarkable stability and robustness, and 
can perform consistent and continuous measurement for several 
hours (Supplementary Fig. 30). The conical lumen geometry of MspA 
and that of the NTA-Ni2+ complex play a critical role in the generation 
of highly characteristic and reproducible amino acid events and, when 
this unique nanopore configuration of MspA-NTA-Ni is combined 
with a custom machine learning algorithm, it has a general accuracy 
of 98.6%. This capacity of amino acid sensing is also applied in the 
analysis of compound amino acid tablets, suggesting its potential 
use in clinical diagnosis and nutrition analysis. Furthermore, this 
principle has been extended to the identification of proteolytically 
cleaved amino acids, to demonstrate a nanopore-based strategy in the 
analysis of the amino acid composition of peptides or proteins. In the 
future, MspA-NTA-Ni may be conjugated with a protease, which would 
enable amino acids produced by hydrolysis of a target protein to be 
sequentially identified by the nanopore to achieve single-molecule 
protein sequencing9.
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Methods
Nanopore preparation
(N90C)1(M2)7 is a hetero-octameric protein, composed of one unit 
of N90C MspA-H6 and seven units of M2 MspA-D16H6 (ref. 19).  
(N90C)1(M2)7 contains a sole cysteine residue that is designed 
for site-specific chemical modification. N90C MspA-H6 and M2 
MspA-D16H6 both contain a hexahistidine (H6) tail, which was intro-
duced to assist protein purification by nickel affinity chromatography. 
The 16-aspartic acid (D16) placed on the monomer M2 MspA-D16H6 was 
designed to enhance the discrimination between different heterogene-
ous (N90C)1(M2)7 assemblies during gel electrophoresis. Prior to the 
preparation of (N90C)1(M2)7, both genes, that is, M2 MspA-D16H6 and 
N90C MspA-H6, were synthesized and simultaneously cloned into a 
pETDuet-1 plasmid by Genscript. To prepare (N90C)1(M2)7, the recon-
structed plasmid was expressed with Escherichia coli strain BL21(DE3) 
plysS-competent cells and the expression products were purified 
by nickel affinity chromatography. Further separation of different 
hetero-octameric MspA was performed using polyacrylamide gel 
electrophoresis, during which the protein band corresponding to the 
(N90C)1(M2)7 assembly was identified. The corresponding band was 
excised from the gel. The protein was recovered from the gel band for 
subsequent use without any further purification.

M2 MspA is a homo-octamer. The gene coding for M2 MspA was 
inserted in a pET-30a (+) vector by GenScript42. The plasmid DNA was 
expressed with E. coli strain BL21(DE3) plysS-competent cells and the 
expression product was purified by nickel affinity chromatography. 
The prepared M2 MspA, which contains no reactive sites, was used as 
the reference nanopore (Supplementary Fig. 7).

Nanopore modification
To modify (N90C)1(M2)7 with a nitrilotriacetic acid (NTA), the pre-
pared (N90C)1(M2)7 and maleimido-C3-NTA (20 mM) were mixed and 
co-incubated for 1 h at room temperature at a volume ratio of 1:8. The 
resulting product, which is referred to as MspA-NTA, was immediately 
used or stored at −80 °C.

The chelation of Ni2+ by MspA-NTA, which produces a Ni2+-modified 
MspA nanopore, referred to as MspA-NTA-Ni, is monitored using 
single-channel recording.

Electrolyte buffer preparations
The KCl buffers (1.5 M KCl, 10 mM MES, pH 6.0; 1.5 M KCl, 10 mM MOPS, 
pH 7.0; 1.5 M KCl, 10 mM HEPES, pH 8.0; 1.5 M KCl, 10 mM CHES, pH 
9.0) were prepared with Milli-Q water. The buffer was then pretreated 
with Chelex 100 resin for 12 h to remove polyvalent metal ions. After 
this, the mixture was filtered through a membrane (0.2 μm) to remove 
the resin. Finally, the pH of the electrolyte buffers was adjusted to the 
desired value.

Nanopore measurements
Nanopore measurements were carried out in a homemade Faraday cage 
placed on an optical table ( Jiangxi Liansheng Technology). The meas-
urement device, which consists of two chambers, was custom-made. 
Conventionally, the electrically grounded chamber is defined as cis 
and the opposing chamber is defined as trans. The two chambers are 
separated by a Teflon film containing a drilled aperture (~100 μm) at 
the center. The aperture was pretreated with 0.5% (v/v) hexadecane in 
pentane prior to each use. Then, each chamber was filled with 0.5 ml KCl 
buffer. A pair of Ag/AgCl electrodes were immersed in both chambers 
and electrically connected to a patch-clamp amplifier to form a closed 
circuit. A drop of DPhPC (diphytanoylphosphatidylcholine, 5 mg ml−1 
in pentane) was then added to each chamber to form a lipid bilayer on 
the aperture. Subsequently, nanopores were added to the cis chamber 
to initiate pore insertions. Upon a single nanopore insertion, the cis 
chamber was immediately replaced with fresh KCl buffer to prevent 
further pore insertions.

All electrophysiological measurements were performed with an 
Axonpatch 200B patch-clamp amplifier paired with a Digidata 1550B 
digitizer at room temperature. All single-channel recordings were 
sampled at 25 kHz and low-pass filtered with a corner frequency of 
1 kHz. Unless otherwise stated, all measurements were performed 
with a buffer of 1.5 M KCl, 10 mM CHES, pH 9.0 and an external voltage 
of +100 mV at room temperature. All analytes were added to the cis 
chamber to the desired final concentration.

The chelation of Ni2+ by MspA-NTA was performed during elec-
trophysiological measurements. Prior to nanopore insertion, Ni2+ was 
added to the trans chamber at a final concentration of 50 μM. With a 
single MspA-NTA inserted, the Ni2+ present in trans will bond with the 
NTA on the pore to form a ternary complex termed MspA-NTA-Ni.

Data analysis
All nanopore events were detected from raw single-channel record-
ing traces using the single-channel search function in Clampfit 10.7 
(Molecular Devices). Events with a dwell time <10 ms were ignored. 
From each event, five event features, that is, ∆I, SD, skewness, kurtosis 
and toff, were extracted using a custom MATLAB program. All subse-
quent data processing was performed with Origin 2021.

Machine learning was performed using the Classification Learner 
toolbox of MATLAB. A total of 300 nanopore events from each amino 
acid class were collected to form a labeled dataset. The label of the 
dataset for each event is assigned as the amino acid type used for 
data generation. The event features (∆I, SD, skewness, kurtosis and 
toff) extracted from nanopore events acquired for each known amino 
acid were collected to form a feature matrix. This feature matrix was 
then randomly split into a training set (80%) and a testing set (20%). 
The training set and the testing set were used as input, respectively, 
by the Classification Learner for model training and testing. A series 
of inbuilt classifiers of MATLAB, that is, Ensemble, Decision Trees, 
Discriminant Analysis, Naïve Bayes, Support Vector Machine (SVM), 
K-Nearest Neighbor (KNN) and Neural Network were evaluated. To 
avoid overfitting, 10-fold cross-validation was performed and the cor-
responding validation accuracy and test accuracy were determined. 
The 10-fold cross-validation was performed by randomly and equally 
splitting the training set into 10 subsets and using each subset in turn 
as the validation set, with the remaining nine subsets being used to 
train the classifier. The cross-validation process is repeated 10 times, 
and the average validation accuracy is used as the evaluation criterion 
for the classification model. Furthermore, the best-performing model 
was screened according to the results of 10-fold cross-validation, and 
the trained model was used to predict unlabeled data. A confusion 
matrix was generated based on the results of the model. A learning 
curve with varying sample sizes was used to estimate the efficiency of 
model training. DBSCAN analysis was performed using Python. The 
epsilon was set to 0.1 and the minimum number of points was set to 
10. The code for the machine learning model and the corresponding 
training data are provided on figshare: https://figshare.com/articles/
software/Amino_acid-classifier/23995890

Calculation of the net charge (Znet) of amino acids
The net charge of the amino acid could be derived as the sum of the 
charges of all its ionizable groups at a given pH. The charge of each 
ionizable group can be quantified using to the Henderson–Hasselbalch 
equation43:

pH = pKa + log([A−]/[HA])

where Ka is the dissociation constant of weak acid and pKa = −lgKa. [HA] 
and [A−] represent the molarities of the weak acid and the conjugate 
base, respectively. Therefore, the ratio of the weak acid and the con-
jugate base of each ionizable group at the given pH (pHtest) can be 
determined from the pKa values. For positive side chain groups and 

http://www.nature.com/naturemethods
https://figshare.com/articles/software/Amino_acid-classifier/23995890
https://figshare.com/articles/software/Amino_acid-classifier/23995890


Nature Methods

Article https://doi.org/10.1038/s41592-023-02021-8

the free amino groups of amino acids, the positive charge, Zpos, is thus 
calculated by:

Zpos = 1/ [1 + 10(pHtest−pKa)]

For negatively charged side chain groups and the free carboxyl 
groups of amino acids, the negative charge, Zneg, is thus calculated by:

Zneg = −1/ [1 + 10(pKa−pHtest)]

The net charge of an amino acid can then be derived from:

Znet = ∑Zpos +∑Zneg

Peptide digestion
Leucine aminopeptidase (LAP) was used to catalyze the release of free 
amino acids from the N terminus of the peptide. A tripeptide (GHK) and 
an octapeptide (TLEIYNRF) were used separately as model peptides 
for the demonstration. The two peptides were separately dissolved 
in a 50 mM sodium phosphate, pH 8.0 buffer with a concentration of 
10 mg ml−1. LAP was prepared in a 50 mM sodium phosphate, pH 8.0 
buffer with a concentration of 50 mg ml−1 (>7 U mg−1). To initiate the 
hydrolysis reaction, 10 μl LAP solution, 20 μl 10 mM MgCl2 and 70 μl 
peptide solution were mixed and incubated at 37 °C for 12 h in a dry 
block incubator. The reaction was stopped by heating the mixture to 
80 °C for 5 min to inactive the LAP. Afterwards, another 100 μl ultrapure 
water was added to the mixture and loaded into an ultracentrifuge 
tube with a 10 kDa molecular weight cut-off. The filtration was then 
performed at 8,000 r.p.m. for 60 min at 4 °C. The filtrate was collected 
and stored at 4 °C for subsequent use.

Molecular dynamics simulations
The molecular dynamics simulations were conducted using GROMACS 
2021.234 with the AMBER ff19SB and lipid21 force field44,45. Following the 
experimental set-up, the mutations D90N/D91N/D93N/D118R/D134R/
E139K were introduced into the MspA. In addition, Asn90 of monomer 
A was replaced by a Cys, with its side chain S atom being covalently con-
nected to an NTA via a linker maleimide (maleimido-C3-NTA). In addi-
tion to the above system (referred to as MspA-NTA hereafter), another 
two systems were also prepared: a system with a Ni2+ bonded to the 
MspA-NTA (MspA-NTA-Ni) and a system with a glycine attached to the 
Ni2+(MspA-NTA-Ni-Gly). The force field parameters of the Cys-NTA and 
Gly were extracted using the packages Sobtop46 and Multiwfn47 follow-
ing the protocol given in the literature46. The simulation systems were 
prepared using the CHARMM-GUI web server48. For the Ni2+, the force 
field parameters developed by Li and Merz49 were used. The crystal 
structure of the MspA (Protein Data Bank code 1UUN)14 was used to set 
up the atomic coordinates of the MspA for the initial structures in the 
simulations. A POPC lipid bilayer with a size of 12 × 12 nm2 was added 
surrounding the MspA. The system was solvated in a rectangular water 
box with a periodic boundary condition. K+ and Cl− ions corresponding 
to a salt concentration of 1.5 M, the same concentration as that used 
in the experiments, were added at random positions in the box. The 
smooth particle-mesh Ewald method was used for the calculations of 
the long-range electrostatic interactions. A cut-off distance of 1.2 nm 
was applied to the van der Waals interactions and the short-range part 
of the electrostatic interactions. For each of the three systems, at least 
five independent simulations with different initial conditions were car-
ried out. In the simulations, the systems were first minimized for 1,000 
steps. Then the systems were heated to 300 K and relaxed for 0.25 ns 
under the NVT (constant temperature, constant volume) ensemble, 
which was followed by another round of relaxation simulations under 
the NPT (constant temperature, constant pressure) ensemble at 300 K 
and 1 atm for 1.6 ns. The product simulations were conducted under the 
NPT ensemble at 300 K and 1 atm for at least 100 ns with a time step of 

2 fs. During all of the above heating, relaxation and production molecu-
lar dynamics simulations, an external electric field of 0.15 V per 10 nm 
along the direction perpendicular to the membrane plane was applied, 
which gives a transmembrane voltage close to that used in the experi-
ments. Meanwhile, a harmonic positional restraint was applied to the 
Cα atoms of the MspA with a spring constant of 500 kJ mol−1 nm−2 and 
to all of the heavy atoms of the lipid molecules with a spring constant 
of 1,000 kJ mol−1 nm−2. A harmonic potential was applied to restrain the 
Ni2+ to within chelation distance of the NTA O atoms. For the system 
MspA-NTA-Ni-Gly, the backbone N and O atoms of Gly were restrained 
to the first coordination shell of Ni2+ by applying a harmonic potential 
during all of the simulation stages. A harmonic potential was applied 
also between the Ni2+ and NTA O atoms.

To analyze the structural features of the NTA in the narrow con-
striction region of the above three systems, the contact probabilities 
between NTA and the side chains of Asn90 and Asn91 in each of the 
monomers were calculated. The side chains of Asn90 and Asn91 are 
located at the inner side of the narrow constriction of the porin. There-
fore, the formation of contacts between NTA and these residues tends 
to have a larger effect on the porin blockade. A contact between NTA 
and the monomer X (X represents the monomer index) was formed 
if the closest distance between the heavy atoms in the side chains of 
the residues Asn90/Asn91 of the protomer X and the N and O atoms 
of the NTA is less than 3.5 Å, or if the closest distance between the 
heavy atoms in the side chains of the residues Asn90/Asn91 of the 
monomer X and the Ni2+ bonded to NTA is less than 5.0 Å. Owing to 
the limitation of the accessible simulation time length, the molecular 
dynamics simulations here cannot capture the full coordination event 
of the Asn90/Asn91 side chains to the first coordination shell of the 
Ni2+ in the system MspA-NTA-Ni. The observed contacts were mainly 
contributed by the water-mediated coordination. Here, a relatively 
larger distance cut-off for the Ni2+ coordination distance was used 
to consider the water-mediated coordination. In the calculation of 
the contact probabilities, the snapshots from the first 50 ns of each 
trajectory were omitted.

Reporting summary
Further information on research design is available in the Nature Port-
folio Reporting Summary linked to this article.

Data availability
Data supporting the findings of this study are given in the main text 
and the Supplementary Information. All source data are provided with 
this paper. All data used to train, evaluate and test the machine learning 
model are available on figshare. Please follow the link: https://figshare.
com/articles/software/Amino_acid-classifier/23995890 for download. 
Source data are provided with this paper.

Code availability
The custom machine learning code is available on figshare as ‘Amino 
acid-classifier’. Please follow the link: https://figshare.com/articles/
software/Amino_acid-classifier/23995890 for download.
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Extended Data Fig. 1 | Simultaneous sensing of leucine and isoleucine.  
The measurements were carried out as described in Methods. A 1.5 M KCl 
buffer (1.5 M KCl, 10 mM CHES, pH 9.0) was used. A transmembrane voltage of 
+100 mV was continually applied. Nickel sulfate was added to trans with a final 
concentration of 50 μM. (a) The chemical structures of leucine (Leu, L) and 
isoleucine (Ile, I). Leucine and isoleucine are isomers with identical mass.  
(b) Top: A representative trace acquired during simultaneous sensing of leucine 
and isoleucine. Each amino acid was added to cis with a final concentration of 

1 mM. Bottom: Representative events of leucine and isoleucine. The events are 
taken from the continuous trace (top) marked with red arrows. I0 represents the 
open pore current of MspA-NTA-Ni. Events caused by leucine and isoleucine are 
easily identifiable. (c) The event scatter plot of ∆I versus S. D. generated from 
results of (b). 274 successive events were used to generate the statistics. Though 
leucine and isoleucine have indistinguishable MW, they are fully discriminated  
by nanopore.
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Extended Data Fig. 2 | Machine-learning assisted identification of twenty-
four amino acids. (a) The machine-learning workflow. Sensing events acquired 
with twenty proteinogenic amino acids and four modified amino acids were 
collected to form a database. Three-hundred events were randomly selected 
from each amino acid class to form a labeled dataset. Five event features 
including ΔI, S.D., skew, kurt and toff were extracted from the events to form a 
feature matrix. After evaluation with ten-fold cross-validation, the quadratic 
SVM model was found to be the optimum model by demonstrating a validation 
accuracy of 98.6% (Supplementary Table 9). (b) The confusion matrix result of 

twenty-four amino acids classification performed with the trained quadratic SVM 
model. The row of the matrix represents the true class and the column represents 
the predicted class. (c) The scatter plot of ∆I versus S. D. generated by results of 
nanopore measurements of 20 proteinogenic amino acids (gray dots) as well 
as four amino acids containing PTMs (colorful dots). One hundred successive 
events of each amino acid were used to generate the statistics. The distribution of 
the four modified amino acids can be fully discriminated from that of the twenty 
proteinogenic amino acids.
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