nature methods

Article

https://doi.org/10.1038/s41592-023-02021-8

Unambiguous discrimination of all
20 proteinogenic amino acids and their
modificationsby nanopore

Received: 26 January 2023

Accepted: 21 August 2023

Published online: 25 September 2023

Kefan Wang ®"%*#, Shanyu Zhang ® '**, Xiao Zhou®*, Xian Yang ® 2,
Xinyue Li®"?, Yuqin Wang ®*?, Pingping Fan'?, Yunqi Xiao'?, Wen Sun®'?,
Panke Zhang ®', Wenfei Li* & Shuo Huang ®'?

W Check for updates

Natural proteins are composed of 20 proteinogenic amino acids and their

post-translational modifications (PTMs). However, due to the lack of a
suitable nanopore sensor that can simultaneously discriminate between all
20 amino acids and their PTMs, direct sequencing of protein with nanopores
has not yet been realized. Here, we present an engineered hetero-octameric
Mycobacterium smegmatis porin A (MspA) nanopore containing a sole Ni?*
modification. It enables full discrimination of all 20 proteinogenic amino
acids and 4 representative modified amino acids, N°,N*-dimethyl-arginine
(Me-R), O-acetyl-threonine (Ac-T), N*-(B-N-acetyl-D-glucosaminyl)-aspar
agine (GIcNAc-N) and O-phosphoserine (P-S). Assisted by machine learning,
anaccuracy of 98.6% was achieved. Amino acid supplement tablets and
peptidase-digested amino acids from peptides were also analyzed using
this strategy. This capacity for simultaneous discrimination of all 20
proteinogenic amino acids and their PTMs suggests the potential to achieve
protein sequencing using this nanopore-based strategy.

Proteins are important executors of life activities' but only a few tech-
niques, such as Edman degradation® and mass spectrometry’, have
the capacity to determine the amino acid sequence of proteins. Detec-
tion limits in protein sequencing also hinder the characterization of
low-abundance proteins. A single-molecule protein sequencer could
provide improved sensitivity and information of post-translational
modifications (PTMs). Nanopore, a versatile single-molecule sensor
that has enabled remarkable progressin nucleic acid sequencing, has
become apromising candidate. Although significant efforts were made
to achieve nanopore translocation of proteins, no sequence informa-
tion could be obtained solely from uncontrolled protein transloca-
tion®. Following a nanopore-induced phase-shift sequencing (NIPSS)
strategy*’, a peptide-oligonucleotide conjugate can be scanned by a
nanopore to report trace signatures containing sequence-dependent

peptideinformation. Thisapproachis, however, still hindered by nano-
pore resolution, which is insufficient for reliable protein sequence
decoding due to the complexity of the sequence combination of the
20 proteinogenic amino acids®®,

Analternative approachis to sequence proteininasequencing by
hydrolysis approach, in which peptidase-digested amino acids are read
sequentially by ananopore, similar to that demonstrated withaprotea-
some nanopore’. This, however, requires a nanopore that canidentify
all proteinogenic amino acids as well as their PTMs unambiguously,
and this has not yet been achieved. Previously, a Cu"-phenanthroline
modified a-hemolysin (a-HL) nanopore was shown to have achieved
directidentification of five pairs of amino acid enantiomers'. It failed,
however, to simultaneously discriminate between all 20 amino acids
due to the insufficient resolution of a-HL. An aerolysin nanopore was

'State Key Laboratory of Analytical Chemistry for Life Sciences, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, China.
2Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing, China. *Collaborative Innovation Center of Advanced
Microstructures, National Laboratory of Solid State Microstructure, Department of Physics, Nanjing University, Nanjing, China. “These authors contributed

equally: Kefan Wang, Shanyu Zhang, Xiao Zhou.

e-mail: shuo.huang@nju.edu.cn

Nature Methods | Volume 21| January 2024 | 92-101

92


http://www.nature.com/naturemethods
https://doi.org/10.1038/s41592-023-02021-8
http://orcid.org/0000-0001-8932-2660
http://orcid.org/0000-0003-2300-957X
http://orcid.org/0000-0001-6926-7289
http://orcid.org/0000-0003-1290-7403
http://orcid.org/0000-0002-9311-241X
http://orcid.org/0000-0003-3280-3302
http://orcid.org/0000-0001-8562-9972
http://orcid.org/0000-0001-6133-7027
http://crossmark.crossref.org/dialog/?doi=10.1038/s41592-023-02021-8&domain=pdf
mailto:shuo.huang@nju.edu.cn

https://doi.org/10.1038/s41592-023-02021-8

b
sH Maleimido-C3-NTA
——————

(N9OC),(M2),

c (N90C),(M2),
320

<

£ 240

<

g

5 160

(&)
80

e

o ; 0| o
Wizl Wi NH:

Z i7-.o aminoacid N7 ' -0 H
N\-l<o _ \1< 0
0 Yo o ~o NH,

o o
NTA-Ni NTA-Ni-amino acid Glycine (G)

Fig.1| Construction of aNi-NTA-modified nanopore for amino acid sensing.
a, The structure of (N90C),(M2),. (N90C),(M2), is a hetero-octameric MspA
containing asole cysteine residue (pink) at site 90 in one of its monomeric
components. b, The construction of a Ni-NTA-modified nanopore. Maleimido-
C3-NTAreacts with the cysteine residue of (N90C),(M2), by a maleimide-thiol
reaction to form MspA-NTA. A Ni?* was subsequently chelated by MspA-NTA. For
simplicity, this nickel-modified pore is referred to as MspA-NTA-Ni. ¢, Real-time
characterization of Ni-NTA modification monitored by single-channel recording.
The measurements were performed as described in Methods. Maleimido-C3-NTA
was added to cis at a final concentration of 200 pM for NTA modification.
Afterwards, nickel sulfate was added to trans with a final concentration of 50 uM
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to trigger nickel chelation. The success of each reaction step resultsin an abrupt
decreaseinthe current amplitude and a change in the current noise. Here, /,
stands for the open pore current of MspA-NTA-Ni. d, The mechanism of amino
acid sensing using MspA-NTA-Ni. e, A representative trace of amino acid sensing
by MspA-NTA-Ni. Glycine was used as the model amino acid. With a continually
applied potential of +100 mV and the addition of glycine to cis with a final
concentration of 2 mM, nanopore events appearing as reversible switching
between/,,and /, were immediately observed. For demonstration, the trace was
Butterworth low-pass filtered with a cut-off frequency of 300 Hz. f, The scatter
plot of Al versus SD of events acquired as described in e. Alis defined as

Al = I, — Iy. Atotal of 165 events were used to generate the plot (n =165).

also used in the discrimination of octapeptides containing a single
terminal amino acid difference”. The analytes of this approach are
short peptides rather than standalone amino acids and it was stated
that only 13 out of 20 peptides of this kind were identified". Some other
approachesof nanopore amino acid identification have beenreported,
but direct identification of all 20 proteinogenic amino acids has still
not beenrealized™. Single-moleculeidentification of amino acids may
be performed by recognition tunneling®, but the reported event dis-
criminationis still unsatisfactory. The consistency of amanufactured
tunneling junction device and its coupling to a nanopore sensor also
pose other technical challenges.

Mycobacterium smegmatis porin A (MspA)™ is a conically shaped
biological nanopore that is used widely in nanopore sequencing of
nucleic acids*’. An engineered MspA can also be used as a nanoreac-
tor that can monitor single-molecule chemical reactions. lons and
small molecules, such as tetrachloroaurate(lll)"®, neuron transmit-
ters'®, anti-COVID-19 drugs", catecholamine enantiomers'®, mono-
saccharides’, nucleoside monophosphates?® and alditols*, have
been identified using MspA nanopores containing suitable reactive
adapters. Inspired by immobilized metal-affinity chromatography
(IMAC)#, inwhich anickel-nitrilotriacetic acid (Ni-NTA) affinity column
is used to purify recombinant proteins containing a hexahistidine
tag, a hetero-octameric MspA containing a sole Ni-NTA adapter at its
pore constriction was designed and prepared for amino acid sensing.
Although Ni-NTA modification applied to the whole internal lumen of
solid state nanopores was previously reported in the detection of his-
tamine® and His-tagged proteins®, abiological nanopore containing
asole Ni** modification has not been reported to date.

Construction of MspA-NTA-Ni

Tointroduce asingle NTA adapter site-specifically to the pore constric-
tion of MspA, a hetero-octameric MspA mutant, also referred to as
(N90C),(M2), (Fig. 1a), was first prepared (Methods)' . (N90C),(M2),,

which consists of one monomeric subunit containing asole cysteine and
seven monomeric subunits lacking any cysteine, was previously gener-
ated for nanopore modification of maleimide derivatives by aMichael
additionreaction”?. In this work, amaleimido-C3-nitrilotriacetic acid
(maleimido-C3-NTA) reacts with the cysteine residue of (N90C),(M2),,
so that a sole NTA adapter is site-specifically introduced to the pore
constriction. For simplicity, this NTA-modified MspA hetero-octamer
isreferred to here as MspA-NTA (Fig. 1b). A nickel ion (Ni**) can then be
chelated by the NTA adapter of MspA-NTA to form an MspA nanopore
containing a sole Ni*" located at its pore constriction. For simplicity,
this Ni*-modified MspA is referred to here as MspA-NTA-Ni.

All of the reaction processes described above were monitored in
real time with single-channel recording (Fig. 1c). Experimentally, the
measurement was performed with a custom measurement chamber
withtwo compartments each containingabuffer of1.5 MKCland10 mM
N-cyclohexyl-2-aminoethanesulfonic acid (CHES) at pH 9.0 (Methods).
By convention, the electrically grounded compartmentis defined as cis
and the opposite compartment is defined as trans. A transmembrane
voltage of +100 mV was applied continually. During single-channel
recording, the open pore current of a single (N90C),(M2), measures
~310 pA. At this stage, fluctuating noise (5.95 + 0.19 pA) was also
observed due to the existence of an unmodified cysteine at the pore
constriction”. Maleimido-C3-NTA was added to cis to reach a final
concentration of 200 pM. Immediately afterwards, an abrupt and
irreversible current drop of -150 pA was recorded, indicating the suc-
cess of the NTAmodification and the generation of MspA-NTA (Fig. 1c).
The open pore current of MspA-NTA also reflects dynamic switching
between two major current levels (158 + 2 pA and 189 + 2 pA), prob-
ably due to the existence of an unoccupied NTA adapter. After further
addition of nickel sulfate to trans with a final concentration of 50 pM,
another irreversible current drop of ~50 pA was observed, confirm-
ing the success of Ni** binding to MspA-NTA and the formation of
MspA-NTA-Ni (Fig. 1c). At this stage, although some transient spike
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noise was seen, dynamic current fluctuations previously observed with
(N90C),(M2), and MspA-NTA were no longer observable, confirming
thatthe previously observed current switching of MspA-NTAwas dueto
the presence of the unoccupied NTA, and that the Ni** was now tightly
boundtothe NTAadapter. During the time-extended measurement, no
further irreversible current drop was observed, confirming that only
one NTA adapter exists in the pore lumen and that the MspA-NTA-Ni
contains only a sole Ni** modification. In this condition, the newly
formed MspA-NTA-Ni remained unchanged in continuous measure-
ments of -3 h (Supplementary Fig. 1). Accordingly, the preparation of
MspA-NTA-Ni is well characterized at the single-molecule level. The
conductance features of (N90C),(M2),, MspA-NTA and MspA-NTA-Ni
were also recorded for future reference (Supplementary Fig. 2 and
Supplementary Table 1). Given that thereis only a single modification
site on the hetero-octamer (N90C),(M2), and that the modified NTA
canbind only asingle Ni?, the nanopore conductance corresponding
tothe state of MspA-NTA and MspA-NTA-Niisindependent of the con-
centration, respectively, of the maleimido-C3-NTA and nickel sulfate
used during nanopore modification.

MspA-NTA can also be prepared in batches by incubating
(N90C),(M2), with maleimido-C3-NTA (Methods). The MspA-NTA
generated in this way can be used directly without any further treat-
mentanditsreported open pore currentisidentical to that previously
characterized by single-channel recording (Fig. 1c). Furthermore,
with asingle MspA-NTA inserted, addition of nickel sulfate to trans to
afinal concentration of 50 pM immediately results in the formation
of MspA-NTA-Ni. With a+100 mV applied bias, the open pore current
of MspA-NTA-Ni (/,) measures ~115 pA, which is consistent with that
observedin Fig. 1c.

Amino acid sensing

Amino acids, which contain both an amino and a carboxyl group, are
bidentate ligands that can react reversibly with metal ions®. When
diffusing to the pore constriction of MspA-NTA-Ni, amino acids are
expected to bond with theimmobilized Ni** to forma ternary complex
(Fig.1d). Given that the binding between Ni* and an amino acid is con-
siderably weaker than that between Ni** and NTA*"% it is expected that
the binding and the dissociation of amino acids would fail to trigger
the dissociation of Ni*' from the NTA adapter. Thus, this configuration
permits continuous and time-extended measurement of different
amino acids. To support this, glycine, the simplest amino acid, was
used as a model analyte (Fig. 1e). Experimentally, the measurement
was performed with batch-prepared MspA-NTA in a 1.5 M KCl buffer
(1.5 MKCI,10 mM CHES, pH 9.0) with a continually applied transmem-
brane voltage of +100 mV. With a single MspA-NTA in the membrane,
nickel sulfate was added to trans to a final concentration of 50 uM,
whichimmediately triggers the formation of MspA-NTA-Ni. Upon the
addition of glycine to ciswithafinal concentration of 2 mM, successive
nanopore events appearing as current fluctuations between /, and
the event current (/,,, which is larger than /), were observed imme-
diately (Fig. 1e and Supplementary Video 1). Furthermore, the rate of
event appearance also increases when the final concentration of gly-
cineaddedtocisisincreased from 0.5 mM to 50 mM (Supplementary
Fig. 3), confirming that the /,, was generated by glycine binding. Even
with 50 pM added glycine, the corresponding events were still detect-
able but with amuch lower rate of event appearance (Supplementary
Fig.4).To describe the sensing events quantitatively, core parameters
such as open pore current (/,), event current (/,,), noise amplitude
(SD; the standard deviation of the event noise), dwell time (¢,),
inter-event duration (¢,,), mean inter-event duration (z,,) and mean
dwell time (7,) are defined and summarized in Supplementary Fig. 5.
Thereciprocal of the meaninter-event duration (1/7,,, n = 3) is propor-
tional to the concentration of glycine, whichis consistent with abimo-
lecular model (Supplementary Fig. 3b and Supplementary Table 2). The
reciprocal of the mean dwell time (1/7,¢, n = 3), however, isindependent

of the glycine concentration, consistent with a unimolecular model
(Supplementary Fig. 3b and Supplementary Table 2). Generally, the rate
of glycine event appearance increases when the buffer pH is upregu-
lated (Supplementary Fig. 6 and Supplementary Table 3), thus a pH
9.0 buffer (1.5 MKCI, 10 mM CHES, pH 9.0) was used for all subsequent
measurements, when not otherwise stated.

The blockage amplitude A/is defined as Al = I,, — I,. For glycine,
the A/is measured at ~70 pA. However, amino acid sensing events
acquired with a Cu(ll) modified a-HL' measure only 2-5 pA. By con-
trast, MspA (ref. 29), which has a conical lumen geometry and focuses
the ionic current to the pore constriction, produces a greater event
amplitude for small molecules than a-HL, which has a cylindrical
lumen®’. The event scatter plot of A/ versus the noise amplitude (that
is, SD) also shows asingle and narrowly distributed population of events
(Fig. 1f), indicating that both of the event features of sensing are
extremely consistent between events. The NTA-Ni*" adapter, which
chemically restricts the conformation of amino acid analytes, plays a
critical role in the production of events. The larger event amplitude
and the high consistency of the event features are critical in the dis-
crimination of different amino acids, although there are only subtle
differences. This sensing capacity, however, could not be achieved
when anMspA containingno NTA adapter or an MspA-NTA containing
no Ni?* was tested (Supplementary Fig. 7). To sum up, this shows that
the MspA nanopore and the NTA-Ni*" adapter are pivotal in the perfor-
mance of amino acid sensing. To the best of our knowledge, however,
abiological nanopore containing an NTA or aNi** modification has not
beenreported previously.

Discrimination of 20 proteinogenic amino acids
To show how different proteinogenic amino acids are distinguished
by MspA-NTA-Ni, identical measurements were performed with various
proteinogenic amino acids (Fig. 2a). In independent measurements
with different amino acids, each type of amino acid produces aunique
event shape (Supplementary Figs. 8-11). This is more clearly seenin
Fig.2a,inwhich allrepresentative amino acid events are shown together
for comparison. Generally, all amino acid sensing events are positive,
thatis, /,, > l.Inaddition, the blockage levels of amino acid eventsall
show telegraphic switching between two levels (Supplementary
Fig.12). This telegraphic switching, which generates unique event fea-
tures for different amino acids, is extremely useful in the discrimination
of all 20 proteinogenic amino acids, again demonstrating the impor-
tance of the NTA-Ni*" adapter.

Although most amino acids produce asingle type of sensing event,
histidine and proline each have two types of sensing events. In histidine,
itsimidazole side chain® may also additionally bond with Ni*", gener-
ating diverse binding configurations discriminable by MspA-NTA-Ni
(Supplementary Video 2). Proline is the only cyclic amino acid of the
20 proteinogenic amino acids, and the a-amino group of proline is
attached directly to its side chain. This particular chemical structure
may generate configurations different from that of other proteinogenic
amino acids. For simplicity, the type 1and type 2 events of histidine and
proline are referred to here as HI/H2 and P1/P2, respectively.

Based onthreeindependent measurements witheachaminoacid
(n=3),the above-described sensing events generate highly reproduc-
ible data. The generated core event parameters summarized in Sup-
plementary Table 4 list the quantitative details. Generally, the A/ of
differentaminoacid eventsis 38-100 pA, whichisamuch wider range
than that previously reported for a-HL, which gives a Alof only 2-5 pA™°.
Thelow resolution of a-HL is thus able to discriminate only between five
pairs of amino acid enantiomers' and failed to achieve simultaneous
discrimination of all 20 proteinogenic amino acids, which is extremely
important for nanopore protein sequencing. Here, by simultaneously
considering Al/and SD (Fig. 2b), events corresponding to the binding
of20 proteinogenic amino acids are well discriminated. Although the
P2 events have some overlap with the H1 eventsin the two-dimensional
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Fig. 2| Discrimination of 20 amino acids using MspA-NTA-Ni. a, The
schematics of amino acid sensing (top left) and representative events generated
by different amino acids when measured with MspA-NTA-Ni. The measurements
were carried out as described in Methods. A total of 20 proteinogenic amino
acids were separately added to cis with a final concentrationof 2mM (A, C, F, G,
H,K,M,N,Q,R,S,T,V,W,Y),4 mM (D, E,I,L) or 40 mM (P) (Supplementary Figs.
8-11and Supplementary Table 4). The final concentration of proline was set
higher to compensate for its low rate of event appearance. Histidine and proline
both produce two types of nanopore events, defined respectively as H1/2 and
P1/2. According to their net charge (Z,.,), all 20 amino acids were classified into
three groups, in which amino acids with positive charge, weak negative charge
and strong negative charge were marked with ared, yellow or blue background,

respectively. b, The scatter plot of A/versus SD of events acquired with different
amino acids. One hundred events acquired with each amino acid were used

to generate the plot, according to which, most amino acid events are fully
distinguishable. To clarify the detail, the events inside the red box are further
zoomed in and shown on the right. Although the events corresponding to P2 and
Hlappeartooverlap inthe plot, their event characteristics are visually different
and can be discriminated when other event features such as dwell time, skewness
and kurtosis are simultaneously considered. ¢, The correlation between A/and
Z,.of amino acids. Generally, the blockage amplitude (A/) is larger when the net
charge of the amino acid is more negative. The color background in the plot is
consistent with thatina.

scatter plot, their event shapes are significantly different and can be
distinguished by the different dwell times (¢,;) (Supplementary Fig.13).
Discrimination between leucine and itsisomer, isoleucine, is difficult
using only mass spectrometry, but they are able to be clearly discrimi-
nated using MspA-NTA-Ni (Extended DataFig. 1), again demonstrating
the very effective resolution of MspA-NTA-Ni for amino acid sensing.
No clear correlation could be seen in the plots of A/ against the
volume or the molecular weight of amino acids (Supplementary
Fig. 14). However, by plotting the mean A/ against the net charge of

different amino acids (Supplementary Table 5), it can be seen that the
Al of events acquired with more negatively charged amino acids is
generally larger (Fig. 2¢). Also, the appearance of a negatively charged
analyte at the MspA constriction, such as a carboxymethyl guanine®,
or the generation of an anionic boronate ester'® generally indicates
enhanced channel conductance. The same phenomenon was also
observed in the significant reduction of channel conductance of MspA
whenthe negatively charged asparticacid at the pore constriction was
mutated to asparagine, which s electrically neutral'**, This sensitivity
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Fig. 3 |Identification of 20 amino acids by machine learning. a, The workflow
of machine learning. In brief, sensing events separately acquired with 20 amino
acids were collected to form a dataset. Five event features (Al, SD, skewness
(skew), kurtosis (kurt) and ¢,;) were extracted from each event to form a feature
matrix. A 2D feature matrix and a 5D feature matrix were built for machine
learning. The 2D matrix contains only two features (A/and SD), similar to that
ina2Dscatter plot (Fig. 2b). The 5D matrix, which contains all five features,
includes more information from sensing. Machine learning was performed with
the Classification Learner toolbox of MATLAB. Seven classifiers were evaluated
with10-fold cross-validation to screen the best-performing model. For the 2D
matrix, the highest validation accuracy is 96.0% (Supplementary Table 6). For
the 5D matrix, the highest validation accuracy reaches 98.8%, achieved by the
quadratic SVM model (Supplementary Table 7). b, The confusion matrix of

amino acid classification generated by the quadratic SVM model using the 5D
feature matrix. TPR (true-positive rate) and FNR (false-positive rate) represent
the correct or false classification of each true class, respectively. ¢, The parallel
coordinate plots generated from the 5D feature matrix. d, The learning curve

of the quadratic SVM model for varying sample size. e-g, Representative traces
acquired during simultaneous sensing of all 20 amino acids. The measurements
were performed as described in Methods. All amino acids were simultaneously
added tocis. The final concentration of Hand C was 0.1 mM. The concentration
of M, N, T, Swas 0.5 mM. The concentration of P was 20 mM. The concentration
of all remaining amino acids was 1 mM. Zoomed-in views of these traces are
shownin Supplementary Figs. 21-23. The events were predicted with the trained
quadratic SVM model.

of MspA to charge is important in the discrimination between amino
acidsthatare similarin mass or volume but which differin charge, such
as glutamic acid (molecular weight, 146.12; Z,.. = —1.28) versus glu-
tamine (molecular weight,146.15; Z,.. = —0.66), and arginine (volume,
188.2; Z,.. = +0.62) versus phenylalanine (volume, 189.7; Z,.. = -0.47).

By applying a +1 mV applied potential, which minimizes the
contribution of the electrophoretic force and the electroosmotic
flow, amino acid events were still clearly detectable (Supplementary
Fig.15), suggesting that the amino acids can spontaneously diffuse to

the pore constriction to trigger event generation. This also explains
why all 20 proteinogenic amino acids, which are differently charged,
can be simultaneously detected in the same set-up (Fig. 3e-g). For
the same reason, amino acid sensing can be carried out regardless of
whether the amino acids were added to cis or trans (Supplementary
Figs.16-18). However, the electrophoretic force still regulates the rate
ofeventappearance for electrically charged amino acids. With the same
applied potential, the addition of electrically charged amino acids to cis
or transwould produce anoticeable difference in their event detection
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by N*,N*-dimethyl-arginine (Me-R), O-acetyl-threonine (Ac-T), N*-(B-N-acetyl-D-
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Bottom: representative nanopore events produced by the corresponding amino
acids (Supplementary Fig. 25 and Supplementary Table 8). The open pore current
(l,) of MspA-NTA-Ni is marked with a dashed line. The current levels resulting
from amino acid binding are marked with different color bands. b, The scatter
plot of Al versus SD of events produced by the four amino acids described in a.
The data points represent 100 events acquired for each amino acid. During
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the measurement, each analyte was solely added to the cis chamber at a final
concentration of 2 mM. c-f, Representative traces acquired from simultaneous
sensing of Me-R/R (c¢), Ac-T/T (d), GIcNAc-N/N (e) and P-S/S (f). Each amino acid
was added to cis with a final concentration of 2 mM. Events were identified

and marked with orange (Me-R), purple (Ac-T), green (GIcNAc-N), pink (P-S)

or gray symbols (for the corresponding unmodified amino acids), above each
event. Noticeable differences in event shapes are seen in each comparison pair.
g-j, The event scatter plots of Al versus SD of events produced by Me-R/R
(g,n=180), Ac-T/T (h,n=158), GIcNAc-N/N (i, n =180) and P-S/S (j, n =150).
Ineach plot, two fully separated populations of events, generated by the
unmodified and modified amino acids, respectively, are seen.

frequency (Supplementary Figs. 17 and 18). However, for electrically
neutralamino acid such as glycine, the addition of amino acids to cisor
transresultsinasimilar detection frequency (Supplementary Fig.16).

Molecular dynamics simulations were conducted using
a GROMACS package® for the MspA embedded in the POPC
(1-palmitoyl-2-oleoylphosphatidylcholine) lipid bilayer at 300 K and
latmwithasalt concentration of 1.5 M. AnNTA adapter was established
and was covalently connected to the side chain S atom at site 90 of the

firstmonomeric subunit of the pore model according to experimental
set-up. Ni*" and glycine were added to the adapter, respectively, to
simulate the states corresponding to NTA, NTA-Ni or NTA-Ni-Gly during
ananopore measurement. An external electric field of 0.15 Vper10 nm
alongthedirection perpendicular to the membrane plane was applied
(Methods). According to the simulation results, prior to Ni** and glycine
binding, the NTA adapter tends to bend towards the trans side of the
membrane. Inthis state the NTA is less conformationally confined and
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Fig. 5| Rapid analysis of amino acid tablets using MspA-NTA-Ni. a, Schematic
diagram of the workflow. The compound amino acid tablets (Kingnature) were
ground into powder and dissolved in a KCl buffer (1.5 M KCI, 10 mM CHES,

pH 9.0) with a final concentration of 50 mg ml™. Then, 10 pl of the solution

was added to cis. Amino acid events were immediately observed and the
eventidentities were predicted by machine learning. b, Arepresentative trace
acquired during nanopore sensing of the amino acid tablet. More details are
showninazoomed-in view of the trace in Supplementary Fig. 28. Nanopore

Al (pA)

measurements were performed as described in Methods. All events were
predicted by the previously trained quadratic SVM model. ¢, The event scatter
plot of Alversus SD generated using events acquired from a 90 min continuous
recording (n=1,117) as described in b. Nine populations of events corresponding
toR, K, T,W,I,F,V,MandL, respectively, were identified by machine learning.
Theidentified amino acid components were consistent with that described in
the productinformation.

may spontaneously switch between multiple conformations in the
porelumen, aphenomenon that might explain why telegraphic noise
was observed at this stage during single-channel recording. However,
when Ni** was bound to the NTA adapter, the Ni** induces strong inter-
actions between amino acids in the pore lumen and the NTA adapter.
This resultsin an extremely tightly bound configuration of the NTA-Ni
adapterinthe pore lumen, which explains why alow noise current level
was consistently observed during single-channel recording (Fig. 1c).
Also, inthis state the narrow pore constrictionis more occupied by the
whole NTA-Ni adapter and a lower channel conductance is expected.
Furthermore, uponbinding with a glycine, the original strong interac-
tion between the pore lumen and the Ni*" is diminished because the
Ni%"is now occupied by the bound glycine. This results in a release of
the whole NTA-Ni-Gly adapter from the narrowest spot of the pore
constriction with a resulting increase in the channel conductance
(Supplementary Figs. 19 and 20), a phenomenon that also explains
why all amino acid sensing events are positive (that is, /,, > I,). At this
stage, the NTA adapter is again loosely confined in its conformation,
which might be the reason why all amino acid events generate highly
fluctuating noise (Fig. 2a).

Identification of amino acids by machine learning
Toautomate eventidentificationand to avoid the bias caused by human
judgment, afair and objective custom machine learning algorithmwas
developed foramino acid identification (Methods). The overall process
of machine learning includes data collection, feature matrix building
and model training (Fig. 3a). A total of 6,000 events separately acquired
with different amino acids were first collected, to form a dataset. Five
event features (thatis, A/, SD, ¢, skewness and kurtosis) of the block-
agelevel of eachevent were extracted using a custom MATLAB code to
form a feature matrix (5SD). All events in the matrix have known labels
because they were separately generated from a known amino acid.
The feature matrix was passed to the Classification Learner toolbox
of MATLARB for training. Seven inbuilt classifiers, that is, ensemble,
SVM (support vector machine), decision trees, naive Bayes, neural net-
work, discriminant analysis and KNN (k-nearest neighbor) were evalu-
ated. Toavoid overfitting, the model performance was evaluated with

10-fold cross-validation. The derived quadratic SVM model, which has a
98.8% validation accuracy, was found to be the best-performing model
(Fig. 3aand Supplementary Tables 6 and 7).

The previously obtained 5D feature matrix was also simplified to
amatrix containing only two event parameters (2D), thatis, A/and SD.
Theresults of the 2D feature matrix were used asinput for training and
validation. However, the reported best validation accuracy dropped
t0 96.0%, indicating that the 5D feature matrix, which contains more
information, clearly outperforms its 2D counterpart. Viewed in a dif-
ferent way, a machine learning program that simultaneously consid-
ers five event features is more accurate than the 2D scatter plot of A/
versus SD (Fig. 2b).

The confusion matrix produced by the quadratic SVM model
is shown in Fig. 3b, in which all amino acid events have a minimum
true-positive rate of 95% (aspartic acid, isoleucine, leucine, asparagine,
arginine and threonine even had atrue-positive rate of 100%). Although
aclear overlap between histidine and proline events was observed in
the 2D scatter plot of A/ versus SD (Fig. 2b), the validation accuracy
of these two amino acids reached 95.4% and 96.7% respectively, by
simultaneously considering the five event features and using machine
learning (Fig. 3b). The parallel coordinate plot generated by the 5D fea-
ture matrix is alsoshownin Fig. 3c. To estimate the efficiency of model
training, a learning curve was produced (Fig. 3d), which showed that
aminimum of 1,500 input events is sufficient to achieve an accuracy
of 98%. Furthermore, the trained quadratic SVM model was used to
identify unlabeled amino acid events acquired with amixture of all20
proteinogenic amino acids (Supplementary Video 3). Representative
traces areshowninFig.3e-gand all events were predicted and labeled
by machine learning (Fig. 3e-g and Supplementary Figs. 21-23). As a
measure of its performance, the corresponding event scatter plot of
Alversus SD before and after eventidentification by machine learning
isshownin Supplementary Fig. 24.

Identification of amino acids containing PTMs

PTMs, which are the chemical modification of proteins after transla-
tion, are critical in the modulation of a wide variety of protein func-
tions. It is estimated that 50-90% of proteins in the human body are
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Amino acid generation

Fig. 6 | Identification of proteolytically cleaved amino acids. a, Schematic
diagram of the identification of proteolytically cleaved amino acids from
peptide using MspA-NTA-Ni. Leucine aminopeptidase (LAP) was used to digest
the peptide and generate the amino acids. The amino acids were then identified
by MspA-NTA-Ni, enabling confirmation of the amino acid components of the
peptide. b, A representative trace of amino acids after LAP treatment of GHK
peptide. ¢, The event scatter plot of Al versus SD for the events acquired as
described inb. Data from a 90 min continuous trace are used. Four populations
of events were identified by machine learning. Here, H1 and H2 represent two
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separate populations of events. d, Representative traces of amino acids after
LAP treatment of octapeptide (TLEIYNRF). e, The event scatter plot of A/ versus
SD for events acquired as described in d. Data from a 90 min continuous trace
are used. Eight populations correspondingtoR,N, T, 1, F, Y, Land E, respectively,
were identified by machine learning. All nanopore measurements (b-e) were
performed as described in Methods. A total of 40 plfiltrate of the LAP digestion
product was added to cis prior to measurement. The eventidentities (b-e) were
predicted by the previously trained machine learning algorithm. The open pore
current (/,) is marked with adashed lineinband d.

post-translationally modified®. Accurate identification of PTMs is
crucial for the understanding of cellular function as well as the related
physiological and pathological processes. Although nanopore sensing
of PTMs on peptides or proteins has been previously reported®*?, a
nanopore that candirectly recognize individualamino acids containing
PTMs hasnever been described, to the best of our knowledge. A recent
reportusing the NIPSS strategy has demonstrated nanopore discrimi-
nation of peptides withindividual phosphothreonine substitutions™.
However, any substitution of phosphothreonine in the peptide will
interfere with the nanopore reading of the neighboring amino acids,
demonstrating an insufficient spatial resolution of that approach. It
also fails to demonstrate nanopore discrimination of other PTMs™.
Four common amino acids containing PTMs™, that is, N*
,N*-dimethyl-arginine (Me-R), O-acetyl-threonine (Ac-T), N*-(B-N-
acetyl-D-glucosaminyl)-asparagine (GlcNAc-N) and O-phospho-serine
(P-S) were used as model analytes (Fig. 4a). They demonstrate, respec-
tively methylation, acetylation, glycosylation and phosphorylation,
which are widely observed in natural proteins. When measured using
MspA-NTA-Ni (Fig. 4a and Supplementary Fig. 25), representative

events generated by these modified amino acids had unique event
features, clearly distinguishable from events of proteinogenic amino
acids (Fig. 2a). Core event parameters, as derived from three inde-
pendent measurements for each condition, are also summarized in
Supplementary Table 8 to show their consistency. The event scatter
plot of Alversus the noise amplitude (thatis, SD) of events of all modi-
fied amino acids (Fig. 4b), in which four fully separated populations of
events are shown, confirms that MspA-NTA-Ni s also suitable for amino
acids containing PTMs and that a highresolution of sensingis achieved.

These four modified amino acids and their unmodified precursors
were also simultaneously sensed by the same nanopore (Fig.4c-fand
Supplementary Video 4). The results from each comparison pair (Sup-
plementary Fig. 26) show two fully separated populations of eventsin
the corresponding scatter plots (Fig. 4g-j). Although demonstrated
with only four modified amino acids, this sensing strategy is in prin-
ciple suitable for other types of modification such as hydroxylation,
nitration or sulfation.

Furthermore, theresults of the nanopore sensing of the four modi-
fied amino acids were complemented by the existing machine learning
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algorithm (Extended DataFig. 2a). The machine learning modelisiden-
tical to that described in Fig. 3, but a total of 24 rather than 20 classes
of amino acid data were used as input. Five event features were used
for machine learning, and 10-fold cross-validation was used to evalu-
ate the model performance (Supplementary Table 9). The quadratic
SVM model had the highest validation accuracy of 98.6%, whichis only
0.2% lower than that for 20 amino acids (98.8%). The corresponding
confusion matrix is also shown in Extended Data Fig. 2b, in which the
accuracy of all 24 amino acids is above 95.0% and the accuracy of 15
aminoacids exceeds 98.0%. The event scatter plot of A/versus SD of all
24 amino acidsis summarized in Extended Data Fig. 2c. Acknowledging
the high resolution of MspA, the inclusion of extra dataacquired with
amino acids containing PTMs does not diminish the performance of
the machine learning program, suggesting that the current strategy
could handle even more types of amino acids in the future.

Rapid analysis of compound amino acid tablets
The high resolution of MspA-NTA-Ni and the high performance of the
accompanying machine learning algorithm suggest that this sens-
ing strategy could be used to analyze amino acid components in real
biological samples. Amino acids are important for nutrition and are
critical for the health and daily activities of humans. A variety of health-
care products designed to supplement nutrition, enhance immunity
and renew physiological functions contain amino acids*. For adem-
onstration, acommercially available ‘compound amino acid tablet’
containing eight essential amino acids® (leucine, isoleucine, lysine,
methionine, phenylalanine, threonine, tryptophan and valine) and one
semi-essential amino acid (arginine) was analyzed using MspA-NTA-Ni
(Fig. 5a and Supplementary Fig. 27).

Thetablets were first pulverized and then dissolved in aKCl buffer
(1.5 MKCI,10 mM CHES, pH 9.0) ata concentration of 50 mg ml™. With
a single MspA-NTA-Ni, the amino acid tablet solution was added to
cis at a final concentration of 1 mg ml™. The corresponding types of
amino acid events were immediately observed during single-channel
recording. The identities of all events were automatically recognized
by the previously trained quadratic SVM model (Fig. 5b and Supple-
mentary Fig. 28). Events from a 90 minute continually recorded trace
were used to generate the event scatter plot (Fig. 5¢), in which nine
clearly delineated populations of amino acid events are seen. They
corresponded, respectively, toarginine, lysine, threonine, tryptophan,
valine, phenylalanine, isoleucine, leucine and methionine, consistent
withthat describedinthe tablet’s product manual. This confirmed that
our sensing strategy is robust, consistent and can be directly appliedin
the quality control of nutrition products. Although a tablet normally
contains other components such as starch and inorganic salts, the
NTA-Ni?* adapter provides sufficient selectivity to avoid interference
from other componentsinnatural samples. This suggests the feasibil-
ity of directidentification of amino acidsinblood serum, urine or milk
serum samples without complicated treatment, which would be useful
in clinical diagnosis or nutrition analysis.

Identification of proteolytically cleaved

amino acids

To evaluate whether the demonstrated sensing strategy may be used
inthe analysis of amino acid composition of peptides or proteins, the
same principle was further applied in the identification of proteolyti-
cally cleaved amino acids (Fig. 6a). Leucine aminopeptidase (LAP) isan
exopeptidase that catalyzes amino acid cleavage from the N terminus
of the polypeptide chain*® and has a broad substrate compatibility.
Thus, LAPwas used to cleave different target peptides into free amino
acids prior to nanopore measurements.

GHK (glycyl-L-histidyl-L-lysine) isanaturally occurring tripeptide
that is widely found in human serum®. It has a high copper affinity
and has anti-inflammatory and tissue remodeling features. Experi-
mentally, GHK was first incubated with LAP at 37 °C for 12 hours to

achieve complete peptide cleavage (Methods). The product was then
ultrafiltered to remove the enzyme, after which 40 pl filtrate was
added to MspA-NTA-Ni, and the measurement was similarly carried out
(Methods). Immediately afterwards, nanopore events corresponding
toamino acids were consecutively reported (Fig. 6b). Events acquired
from a 90 minute continually recorded trace were used to generate
the scatter plot of A/versus SD (Fig. 6c and Supplementary Fig. 29). To
remove non-clustered background noise, a DBSCAN (density-based
spatial clustering of applications with noise) analysis was performed
(Supplementary Fig. 29). Here, the non-clustered events may result
frominterfering moleculesintroduced from the enzymatic digestion
buffer. Afterwards, four clusters of events were observed. According
tothe previously trained machine learning algorithm, they were identi-
fied, respectively, asK, G, Hland H2 (Fig. 6¢), fully consistent with the
amino acid composition of the GHK peptide. Here, H1 and H2 are the
two types of events generated by histidine, as noted above (Fig. 2aand
Supplementary Video 2).

To demonstrate the generalizability of this assay to other
peptides, a custom-synthesized octapeptide with a sequence of
Thr-Leu-Glu-lle-Tyr-Asn-Arg-Phe (TLEIYNRF) was identically treated
and measured with MspA-NTA-Ni. A representative trace of the nano-
poresensing of the TLEIYNRF digestion productis showninFig. 6d,in
whichthe events correspondingto the expected amino acid identities
areseen. After DBSCAN treatment followed by machine learning predic-
tion (Fig. 6e and Supplementary Fig. 29), eight clearly delineated event
populations were identified and they correspond, respectively,toR, N,
T,LF,Y,LandE, consistent with the sequence of the source peptide. To
thisend, this successfully demonstrates the capacity of MspA-NTA-Ni
toidentify proteolytically cleaved amino acids.

Discussion

A Ni**-modified MspA hetero-octamer (MspA-NTA-Ni) has
been designed and used for amino acid sensing (Supplementary
Video5). It demonstrates clear discrimination of all 20 proteinogenic
amino acids and 4 representative amino acids containing PTMs. This
sensing configuration has remarkable stability and robustness, and
can perform consistent and continuous measurement for several
hours (Supplementary Fig. 30). The conical lumen geometry of MspA
and that of the NTA-Ni** complex play a critical role in the generation
of highly characteristicand reproducible amino acid events and, when
this unique nanopore configuration of MspA-NTA-Ni is combined
with a custom machine learning algorithm, it has ageneral accuracy
of 98.6%. This capacity of amino acid sensing is also applied in the
analysis of compound amino acid tablets, suggesting its potential
use in clinical diagnosis and nutrition analysis. Furthermore, this
principle has been extended to the identification of proteolytically
cleaved amino acids, to demonstrate ananopore-based strategyinthe
analysis of the amino acid composition of peptides or proteins. In the
future, MspA-NTA-Ni may be conjugated with a protease, which would
enable amino acids produced by hydrolysis of a target protein to be
sequentially identified by the nanopore to achieve single-molecule
protein sequencing’.
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Methods

Nanopore preparation

(N90C),(M2), is a hetero-octameric protein, composed of one unit
of N90C MspA-H6 and seven units of M2 MspA-D16H6 (ref. 19).
(N90C),(M2), contains a sole cysteine residue that is designed
for site-specific chemical modification. N9OC MspA-H6 and M2
MspA-D16H6 both contain a hexahistidine (H6) tail, which was intro-
ducedtoassist protein purification by nickel affinity chromatography.
Thel6-asparticacid (D16) placed on the monomer M2 MspA-D16H6 was
designedto enhance the discrimination between different heterogene-
ous (N90C),(M2), assemblies during gel electrophoresis. Prior to the
preparation of (N90C),(M2),, both genes, that is, M2 MspA-D16H6 and
N90C MspA-Hé6, were synthesized and simultaneously cloned into a
pETDuet-1plasmid by Genscript. To prepare (N90C),(M2),, the recon-
structed plasmid was expressed with Escherichia colistrain BL21(DE3)
plysS-competent cells and the expression products were purified
by nickel affinity chromatography. Further separation of different
hetero-octameric MspA was performed using polyacrylamide gel
electrophoresis, during which the protein band corresponding to the
(N90C),(M2), assembly was identified. The corresponding band was
excised from the gel. The protein was recovered from the gel band for
subsequent use without any further purification.

M2 MspA is a homo-octamer. The gene coding for M2 MspA was
inserted ina pET-30a (+) vector by GenScript*%. The plasmid DNA was
expressed with E. coli strain BL21(DE3) plysS-competent cells and the
expression product was purified by nickel affinity chromatography.
The prepared M2 MspA, which contains no reactive sites, was used as
the reference nanopore (Supplementary Fig. 7).

Nanopore modification
To modify (N90C),(M2), with a nitrilotriacetic acid (NTA), the pre-
pared (N90C),(M2), and maleimido-C3-NTA (20 mM) were mixed and
co-incubated for1hatroom temperature at a volume ratio of 1:8. The
resulting product, whichisreferred to as MspA-NTA, wasimmediately
used or stored at—80 °C.

The chelation of Ni** by MspA-NTA, which produces aNi**-modified
MspA nanopore, referred to as MspA-NTA-Ni, is monitored using
single-channel recording.

Electrolyte buffer preparations

TheKClbuffers (1.5 MKCI,10 mMMES, pH 6.0;1.5 MKCI, 10 mM MOPS,
pH 7.0; 1.5 M KCl, 10 mM HEPES, pH 8.0; 1.5 M KCI, 10 mM CHES, pH
9.0) were prepared with Milli-Q water. The buffer was then pretreated
with Chelex 100 resin for 12 h to remove polyvalent metal ions. After
this, the mixture was filtered through amembrane (0.2 pm) to remove
theresin. Finally, the pH of the electrolyte buffers was adjusted to the
desired value.

Nanopore measurements

Nanopore measurements were carried outinahomemade Faraday cage
placed onanoptical table (Jiangxi Liansheng Technology). The meas-
urement device, which consists of two chambers, was custom-made.
Conventionally, the electrically grounded chamber is defined as cis
and the opposing chamber is defined as trans. The two chambers are
separated by a Teflon film containing a drilled aperture (-100 pm) at
the center. The aperture was pretreated with 0.5% (v/v) hexadecanein
pentane prior to each use. Then, each chamber was filled with 0.5 mIKCI
buffer. A pair of Ag/AgCl electrodes wereimmersed inboth chambers
andelectrically connected to a patch-clamp amplifier to forma closed
circuit. Adrop of DPhPC (diphytanoylphosphatidylcholine, 5 mg ml™
inpentane) was thenadded to each chambertoformalipid bilayer on
the aperture. Subsequently, nanopores were added to the cischamber
to initiate pore insertions. Upon a single nanopore insertion, the cis
chamber was immediately replaced with fresh KCI buffer to prevent
further poreinsertions.

All electrophysiological measurements were performed with an
Axonpatch 200B patch-clamp amplifier paired with a Digidata 1550B
digitizer at room temperature. All single-channel recordings were
sampled at 25 kHz and low-pass filtered with a corner frequency of
1kHz. Unless otherwise stated, all measurements were performed
with abuffer of1.5 MKCI, 10 mM CHES, pH 9.0 and an external voltage
of +100 mV at room temperature. All analytes were added to the cis
chamber to the desired final concentration.

The chelation of Ni** by MspA-NTA was performed during elec-
trophysiological measurements. Prior to nanopore insertion, Ni** was
added to the trans chamber at a final concentration of 50 pM. With a
single MspA-NTA inserted, the Ni%* present in trans will bond with the
NTA onthe pore to form a ternary complex termed MspA-NTA-Ni.

Data analysis

All nanopore events were detected from raw single-channel record-
ing traces using the single-channel search function in Clampfit 10.7
(Molecular Devices). Events with a dwell time <10 ms were ignored.
Fromeach event, five event features, thatis, A/, SD, skewness, kurtosis
and ¢, were extracted using a custom MATLAB program. All subse-
quent data processing was performed with Origin 2021.

Machine learning was performed using the Classification Learner
toolbox of MATLAB. A total of 300 nanopore events from each amino
acid class were collected to form a labeled dataset. The label of the
dataset for each event is assigned as the amino acid type used for
data generation. The event features (A/, SD, skewness, kurtosis and
t.q) extracted from nanopore events acquired for each known amino
acid were collected to form a feature matrix. This feature matrix was
then randomly split into a training set (80%) and a testing set (20%).
The training set and the testing set were used as input, respectively,
by the Classification Learner for model training and testing. A series
of inbuilt classifiers of MATLAB, that is, Ensemble, Decision Trees,
Discriminant Analysis, Naive Bayes, Support Vector Machine (SVM),
K-Nearest Neighbor (KNN) and Neural Network were evaluated. To
avoid overfitting, 10-fold cross-validation was performed and the cor-
responding validation accuracy and test accuracy were determined.
The10-fold cross-validation was performed by randomly and equally
splitting the training set into 10 subsets and using each subset in turn
as the validation set, with the remaining nine subsets being used to
train the classifier. The cross-validation process is repeated 10 times,
and the average validation accuracy is used as the evaluation criterion
for the classification model. Furthermore, the best-performing model
was screened according to the results of 10-fold cross-validation, and
the trained model was used to predict unlabeled data. A confusion
matrix was generated based on the results of the model. A learning
curve with varying sample sizes was used to estimate the efficiency of
model training. DBSCAN analysis was performed using Python. The
epsilon was set to 0.1 and the minimum number of points was set to
10. The code for the machine learning model and the corresponding
training dataare provided on figshare: https://figshare.com/articles/
software/Amino_acid-classifier/23995890

Calculation of the net charge (Z,..) of amino acids

The net charge of the amino acid could be derived as the sum of the
charges of all its ionizable groups at a given pH. The charge of each
ionizable group canbe quantified using to the Henderson-Hasselbalch
equation®:

pH = pK, +log([A~]/[HA])

whereK; isthedissociation constant of weak acid and pK, = —IgK,. [HA]
and [A7] represent the molarities of the weak acid and the conjugate
base, respectively. Therefore, the ratio of the weak acid and the con-
jugate base of each ionizable group at the given pH (pH,,,) can be
determined from the pK, values. For positive side chain groups and
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the free amino groups of amino acids, the positive charge, Z,,,,, is thus
calculated by:

Zpos =1/ [1 + lo(pH‘esr—pKQ)]

For negatively charged side chain groups and the free carboxyl
groups of amino acids, the negative charge, Z,.,, is thus calculated by:

Zyeg = —1/ [1+107 M)

The net charge of an amino acid can then be derived from:
Zper = ZZpos + zzneg

Peptide digestion

Leucine aminopeptidase (LAP) was used to catalyze the release of free
amino acids fromthe N terminus of the peptide. A tripeptide (GHK) and
an octapeptide (TLEIYNRF) were used separately as model peptides
for the demonstration. The two peptides were separately dissolved
ina 50 mM sodium phosphate, pH 8.0 buffer with a concentration of
10 mg ml™. LAP was prepared in a 50 mM sodium phosphate, pH 8.0
buffer with a concentration of 50 mg ml™ (>7 U mg™). To initiate the
hydrolysis reaction, 10 pl LAP solution, 20 il 10 mM MgCl, and 70 pl
peptide solution were mixed and incubated at 37 °C for12hinadry
block incubator. The reaction was stopped by heating the mixture to
80 °Cfor5 mintoinactive the LAP. Afterwards, another100 plultrapure
water was added to the mixture and loaded into an ultracentrifuge
tube with a 10 kDa molecular weight cut-off. The filtration was then
performedat 8,000 r.p.m.for 60 minat4 °C. Thefiltrate was collected
and stored at 4 °C for subsequent use.

Molecular dynamics simulations

The molecular dynamics simulations were conducted using GROMACS
2021.2** with the AMBER ff19SB and lipid21 force field***. Following the
experimental set-up, the mutations DOON/D9IN/D93N/D118R/D134R/
E139K were introduced into the MspA. Inaddition, Asn90 of monomer
AwasreplacedbyaCys, withitsside chainS atombeing covalently con-
nected toan NTAviaalinker maleimide (maleimido-C3-NTA). In addi-
tionto the above system (referred to as MspA-NTA hereafter), another
two systems were also prepared: a system with a Ni* bonded to the
MspA-NTA (MspA-NTA-Ni) and asystem withaglycine attached to the
Ni**(MspA-NTA-Ni-Gly). The force field parameters of the Cys-NTA and
Glywere extracted using the packages Sobtop*® and Multiwfn*’ follow-
ing the protocol givenin the literature*®. The simulation systems were
prepared using the CHARMM-GUI web server*®, For the Ni*", the force
field parameters developed by Li and Merz*’ were used. The crystal
structure of the MspA (Protein Data Bank code IUUN)* was used to set
up the atomic coordinates of the MspA for the initial structuresin the
simulations. A POPC lipid bilayer with a size of 12 x 12 nm? was added
surrounding the MspA. The system was solvated in arectangular water
boxwitha periodicboundary condition.K"and Cl” ions corresponding
to a salt concentration of 1.5 M, the same concentration as that used
in the experiments, were added at random positions in the box. The
smooth particle-mesh Ewald method was used for the calculations of
the long-range electrostatic interactions. A cut-off distance of 1.2 nm
was applied tothe vander Waals interactions and the short-range part
oftheelectrostaticinteractions. For each of the three systems, at least
fiveindependent simulations with differentinitial conditions were car-
ried out. Inthe simulations, the systems were first minimized for 1,000
steps. Then the systems were heated to 300 K and relaxed for 0.25 ns
under the NVT (constant temperature, constant volume) ensemble,
which was followed by another round of relaxation simulations under
the NPT (constant temperature, constant pressure) ensemble at 300 K
and1atmfor1.6 ns. The product simulations were conducted under the
NPT ensemble at 300 Kand 1 atm for atleast 100 ns with atime step of

2 fs.Duringall of the above heating, relaxation and production molecu-
lar dynamics simulations, an external electric field of 0.15 V per 10 nm
alongthedirection perpendicular to the membrane plane was applied,
which gives atransmembrane voltage close to that used in the experi-
ments. Meanwhile, a harmonic positional restraint was applied to the
Ca atoms of the MspA with a spring constant of 500 k) mol™ nm~2and
to all of the heavy atoms of the lipid molecules with a spring constant
0f1,000 k] mol™ nm™. A harmonic potential was applied to restrain the
Ni** to within chelation distance of the NTA O atoms. For the system
MspA-NTA-Ni-Gly, thebackbone N and O atoms of Gly were restrained
tothe first coordination shell of Ni** by applying a harmonic potential
during all of the simulation stages. A harmonic potential was applied
also between the Ni* and NTA O atoms.

To analyze the structural features of the NTA in the narrow con-
striction region of the above three systems, the contact probabilities
between NTA and the side chains of Asn90 and Asn91 in each of the
monomers were calculated. The side chains of Asn90 and Asn91 are
located attheinner side of the narrow constriction of the porin. There-
fore, the formation of contacts between NTA and these residues tends
to have alarger effect on the porin blockade. A contact between NTA
and the monomer X (X represents the monomer index) was formed
if the closest distance between the heavy atoms in the side chains of
the residues Asn90/Asn91 of the protomer X and the N and O atoms
of the NTA is less than 3.5 A, or if the closest distance between the
heavy atoms in the side chains of the residues Asn90/Asn91 of the
monomer X and the Ni>* bonded to NTA is less than 5.0 A. Owing to
the limitation of the accessible simulation time length, the molecular
dynamics simulations here cannot capture the full coordination event
of the Asn90/Asn91 side chains to the first coordination shell of the
Ni** in the system MspA-NTA-Ni. The observed contacts were mainly
contributed by the water-mediated coordination. Here, a relatively
larger distance cut-off for the Ni?* coordination distance was used
to consider the water-mediated coordination. In the calculation of
the contact probabilities, the snapshots from the first 50 ns of each
trajectory were omitted.

Reporting summary
Furtherinformation onresearch designisavailableinthe Nature Port-
folio Reporting Summary linked to this article.

Data availability

Data supporting the findings of this study are given in the main text
and the Supplementary Information. All source data are provided with
this paper. All data used to train, evaluate and test the machine learning
model are available on figshare. Please follow the link: https://figshare.
com/articles/software/Amino_acid-classifier/23995890 for download.
Source data are provided with this paper.

Code availability

The custom machine learning code is available on figshare as ‘Amino
acid-classifier’. Please follow the link: https://figshare.com/articles/
software/Amino_acid-classifier/23995890 for download.
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Extended Data Fig. 1| Simultaneous sensing of leucine and isoleucine.

The measurements were carried out as described in Methods. A1.5 MKCI

buffer (1.5 MKCI, 10 mM CHES, pH 9.0) was used. A transmembrane voltage of
+100 mV was continually applied. Nickel sulfate was added to trans with a final
concentration of 50 pM. (a) The chemical structures of leucine (Leu, L) and
isoleucine (lle, I). Leucine and isoleucine are isomers with identical mass.

(b) Top: Arepresentative trace acquired during simultaneous sensing of leucine
andisoleucine. Each amino acid was added to cis with a final concentration of

1 mM. Bottom: Representative events of leucine and isoleucine. The events are
taken from the continuous trace (top) marked with red arrows. /, represents the
open pore current of MspA-NTA-Ni. Events caused by leucine and isoleucine are
easily identifiable. (c) The event scatter plot of Al versus S. D. generated from
results of (b). 274 successive events were used to generate the statistics. Though
leucine and isoleucine have indistinguishable MW, they are fully discriminated
by nanopore.
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Extended Data Fig. 2| Machine-learning assisted identification of twenty-
four amino acids. (a) The machine-learning workflow. Sensing events acquired
with twenty proteinogenic amino acids and four modified amino acids were
collected to form a database. Three-hundred events were randomly selected
from each amino acid class to form a labeled dataset. Five event features
including Al S.D., skew, kurt and ¢, were extracted from the events to forma
feature matrix. After evaluation with ten-fold cross-validation, the quadratic
SVM model was found to be the optimum model by demonstrating a validation
accuracy of 98.6% (Supplementary Table 9). (b) The confusion matrix result of
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twenty-four amino acids classification performed with the trained quadratic SVM
model. The row of the matrix represents the true class and the column represents
the predicted class. (c) The scatter plot of Al versus S. D. generated by results of
nanopore measurements of 20 proteinogenic amino acids (gray dots) as well

as four amino acids containing PTMs (colorful dots). One hundred successive
events of each amino acid were used to generate the statistics. The distribution of
the four modified amino acids can be fully discriminated from that of the twenty
proteinogenic amino acids.
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